电子产品世界 » 论坛首页 » 综合技术 » 电源模拟 » 巨磁电阻结构组成特点


共1条 1/1 1 跳转至

巨磁电阻结构组成特点

助工
2018-09-30 09:58:55    评分


  巨磁阻效应(Giant Magnetoresistance,缩写:GMR)是一种量子力学和凝聚体物理学现象,磁阻效应的一种,可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到。2007年诺贝尔物理学奖被授予发现巨磁阻效应(GMR)的彼得·格林贝格和艾尔伯·费尔。巨磁电阻就是电阻值对磁场变化巨敏感的一种电阻材料。

  巨磁电阻现象

  物质在一定磁场下电阻改变的现象,称为“磁阻效应”,磁性金属和合金材料一般都有这种磁电阻现象,通常情况下,物质的电阻率在磁场中仅产生轻微的减小;在某种条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的磁电阻值约高10余倍,称为“巨磁阻效应”(GMR);而在很强的磁场中某些绝缘体会突然变为导体,称为“超巨磁阻效应”(CMR)。

  如右图所示,左面和右面的材料结构相同,两侧是磁性材料薄膜层(蓝色),中间是非磁性材料薄膜层(橘色)。

  左面的结构中,两层磁性材料的磁化方向相同。

  当一束自旋方向与磁性材料磁化方向都相同的电子通过时,电子较容易通过两层磁性材料,都呈现小电阻。

  当一束自旋方向与磁性材料磁化方向都相反的电子通过时,电子较难通过两层磁性材料,都呈现大电阻。这是因为电子的自旋方向与材料的磁化方向相反,产生散射,通过的电子数减少,从而使得电流减小。

  右面的结构中,两层磁性材料的磁化方向相反。

  当一束自旋方向与第一层磁性材料磁化方向相同的电子通过时,电子较容易通过,呈现小电阻;但较难通过第二层磁化方向与电子自旋方向相反的磁性材料,呈现大电阻。

  当一束自旋方向与第一层磁性材料磁化方向相反的电子通过时,电子较难通过,呈现大电阻;但较容易通过第二层磁化方向与电子自旋方向相同的磁性材料,呈现小电阻。 

巨磁电阻结构组成特点_巨磁电阻的应用

  巨磁电阻结构组成特点

  1、巨磁电阻效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致电阻值的变化。

  2、如图所示,多层GMR 结构中,无外磁场时,上下两层铁磁膜的磁矩是反平行耦合的。在足够强的外磁场作用下,铁磁膜的磁矩方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。

巨磁电阻结构组成特点

  巨磁电阻的应用

  巨磁阻效应在高密度读出磁头、磁存储元件上有着广泛的应用。随着技术的发展,当存储数据的磁区越来越小,存储数据密度越来越大,这对读写磁头提出更高的要求。巨磁阻物质中电流的增大与减小,可以定义为逻辑信号的0与1,进而实现对磁性存储装置的读取。巨磁阻物质可以将用磁性方法存储的数据,以不同大小的电流输出,并且即使磁场很小,也能输出足够的电流变化,以便识别数据,从而大幅度提高了数据存储的密度。

  巨磁阻效应被成功地运用在硬盘生产上。1994年,IBM公司研制成功了巨磁电阻效应的读出磁头,将磁盘记录密度提高了17倍,从而使得磁盘在与光盘的竞争中重新回到领先地位。目前,巨磁阻技术已经成为几乎所有计算机、数码相机和MP3播放器等的标准技术。

  利用巨磁电阻物质在不同的磁化状态下具有不同电阻值的特点,还可以制成磁性随机存储器(MRAM),其优点是在不通电的情况下可以继续保留存储的数据。

  除此之外,巨磁阻效应还应用于微弱磁场探测器。

AO-Electronics 傲壹电子 

官网:www.aoelectronics.com 中文网:www.aoelectronics.cn


傲壹电子.jpg




共1条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]