这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 综合技术 » 物联网技术 » 「树莓派」「上海晶珩」「EDATEC」在树莓派64位上安装TensorFlow

共1条 1/1 1 跳转至

「树莓派」「上海晶珩」「EDATEC」在树莓派64位上安装TensorFlow

菜鸟
2023-05-15 15:35:53     打赏
「树莓派」「上海晶珩」「EDATEC」在 Raspberry Pi 64 位 OS 上安装 TensorFlow

介绍

本页将指导您在Raspberry Pi 4 64位操作系统Bullseye 上安装 TensorFlow 2.10.0 或更早版本。

TensorFlow是一个专门为深度学习开发的大型软件库。它消耗大量资源。你可以在Raspberry Pi 4上执行TensorFlow,但不要指望奇迹。它可以运行您的模型,如果不是太复杂,但它将无法训练新模型。它也不能执行所谓的迁移学习。除了运行预先构建的深度学习模型外,您还可以使用该库将所谓的冻结 TensorFlow 模型转换为 TensorFlow Lite 平面缓冲区模型。

如果你只是想对深度学习有一些印象,请考虑安装TensorFlow Lite。它的速度要快得多,使用的资源要少得多,因为它是为Raspberry Pi等小型计算机设计的。您可以使用许多现成的生成模型。在此处查看我们的 64 位 Raspberry 安装指南。

路线图

TensorFlow继续增长。每个新版本都需要更多的资源、支持软件和库。它越来越多地给你的树莓派带来了沉重的负担。它解释了为什么最新版本在具有“过时”操作系统的“旧”Raspberry Pis上不能很好地运行。

另一方面,不建议在最新的Bullseye上安装非常旧的TensorFlow版本。您将被迫降级某些系统库,这将阻止其他软件运行。这里最好遵循:“顺其自然”。

以下是概述。绿色复选标记表示有版本可用。空的绿色盒子意味着没有版本,但仍然可以安装。灰色框指定不允许“正常”安装的硬件或软件限制。

提示

通常,我们会收到一个问题,如果我们有一个带有预装框架和深度学习示例的 Raspberry Pi 4 的 SD 图像。
我们很乐意遵守这一要求。请在我们的GitHub页面上找到一个完整的Raspberry Pi 4,专门用于深度学习。 从我们的GDrive网站下载zip文件,解压缩并在16 GB SD卡上刷新图像,然后开始吧!

我们讨论了两个安装,一个用于 Python 3,一个用于 API 库C++。 不幸的是,没有官方的 aarch64 pip3 轮可用于 2.7、2.6 或 2.5 版本。但是,为了您的方便,我们使用 Bazel 创建了我们的轮子并将它们放在 GitHub 上。
本指南的最后一部分讨论了Keras的安装。

准备

Numpy

Tensorflow在最新版本的numpy中遇到了问题。将 TensorFlow 移植到 numpy 1.20 变得非常困难。现在,随着TensorFlow版本2.8.0的出现,它终于成功了。最后,安装TensorFlow时不再有numpy版本冲突。
但是,TensorFlow 2.7.0仍然报告了一些问题。为了安全起见,请使用 numpy 版本 1.19.5为了TF 2.7.0 以确保一切正常。

libclang 9.0.1

TensorFlow 2.7.0 依赖于 libclang 9.0.1。没有适用于 Debian 10 的发行版。这就是为什么只有TensorFlow 2.7安装在Debian11Bullseye上,。你可以从头开始在Buster RPi上安装libclang 9.0.1,这样你就可以安装TensorFlow了。请注意,clang构建需要大量资源,超过5 GB。最好切换到Bullseye,并在半小时内启动并运行TensorFlow

Protobuffer 4.21

最新版本的Protobuffer 4.21.0与以前的版本3.20.1相比有一些重大改进。但是,TensorFlow尚不支持这些更改。为了使 TensorFlow 正常工作,如果您安装了4.21 ,则需要将 Protobuf 降级到 3.20版本。

有关如何降级的更多信息,请访问我们的 GitHub 页面。

Tensorflow-io-gcs-filesystem

所有依赖项都可以只用一个命令安装,除了 tensorflow-io-gcs 文件系统。由于没有 aarch64 机器的发行版,我们必须从头开始构建 tensorflow-io-gcs 文件系统。整个过程可以在下面找到,应该在安装TensorFlow本身之前完成。如果让TensorFlow安装io-gcs,它将选择错误的版本并且不起作用。

# get a fresh start
$ sudo apt-get update
$ sudo apt-get upgrade
# install pip3
$ sudo apt-get install git python3-pip
# install correct version protobuf
$ sudo -H pip3 install --upgrade protobuf==3.20.0
Method 1
# download tensorflow io
$ git clone -b v0.23.1 --depth=1 --recursive https://github.com/tensorflow/io.git
$ cd io
$ python3 setup.py -q bdist_wheel --project tensorflow_io_gcs_filesystem
$ cd dist
$ sudo -H pip3 install tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-linux_aarch64.whl
$ cd ~
Method 2
# or download wheel
$ git clone https://github.com/Qengineering/Tensorflow-io.git
$ cd Tensorflow-io
$ sudo -H pip3 install tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-linux_aarch64.whl
$ cd ~

Python 3.9 的 TensorFlow wheels

TensorFlow由一个名为Bazel的Google软件安装程序安装。最后,Bazel生成一个轮子来安装TensorFlow Python版本,或者在安装C++版本时生成一个压缩包。这两种方法都是树莓派用户所熟知的。我们已经在GitHub页面上发布了Bazel的结果。随意使用这些轮子。整个 TensorFlow 安装过程从头到尾需要很多小时(Python ±64,C++库±1)。完成所有繁琐的工作后,只需几分钟即可在Raspberry 64位Bullseye上安装TensorFlow。对于很难完成的部分,本手册稍后将介绍完整的程序。
整个快捷方式过程如下。wheels太大,无法存储在GitHub上,因此使用Google驱动器代替。

TensorFlow 2.10.0

# install gdown to download from Google drive
$ sudo -H pip3 install gdown
# download the wheel
$ gdown https://drive.google.com/uc?id=1G2P-FaHAXJ-UuQAQn_0SYjNwBu0aShpd
# install TensorFlow 2.10.0
$ sudo -H pip3 install tensorflow-2.10.0-cp39-cp39-linux_aarch64.whl

TensorFlow 2.9.1

# install gdown to download from Google drive
$ sudo -H pip3 install gdown
# download the wheel
$ gdown https://drive.google.com/uc?id=1xP6ErBK85SMFnQamUh4ro3jRmdCV_qDU
# install TensorFlow 2.9.1
$ sudo -H pip3 install tensorflow-2.9.1-cp39-cp39-linux_aarch64.whl

TensorFlow 2.8.0

# install gdown to download from Google drive
$ sudo -H pip3 install gdown
# download the wheel
$ gdown https://drive.google.com/uc?id=1YpxNubmEL_4EgTrVMu-kYyzAbtyLis29
# install TensorFlow 2.8.0
$ sudo -H pip3 install tensorflow-2.8.0-cp39-cp39-linux_aarch64.whl

TensorFlow 2.7.0

# utmost important: use only numpy version 1.19.5
# check the version first
$ pip3 list | grep numpy
# if not version 1.19.5, update!
$ sudo -H pip3 install numpy==1.19.5
# (re)install termcolor at the correct location
$ python3 -m pip install termcolor
# install gdown to download from Google drive
$ sudo -H pip3 install gdown
# download the wheel
$ gdown https://drive.google.com/uc?id=1FdVZ1kX5QZgWk2SSgq31C2-CF95QhT58
# install TensorFlow 2.7.0
$ sudo -H pip3 install tensorflow-2.7.0-cp39-cp39-linux_aarch64.whl

安装成功后,应获得以下屏幕输出。

TensorFlow 2.8.0 C++ API

如果你打算用C++编程,你将需要TensorFlow的C++API版本,而不是Python版本。使用我们 GitHub 页面中的预构建压缩包安装 C++ 库可以为您节省大量时间。 请按照以下步骤操作。

TensorFlow 2.10.0

# get a fresh start
$ sudo apt-get update
$ sudo apt-get upgrade
# remove old versions (if found)
$ sudo rm -r /usr/local/lib/libtensorflow*
$ sudo rm -r /usr/local/include/tensorflow
# the dependencies
$ sudo apt-get install wget curl libhdf5-dev libc-ares-dev libeigen3-dev
$ sudo apt-get install libatomic1 libatlas-base-dev zip unzip
# install gdown to download from Google drive (if not already done)
$ sudo -H pip3 install gdown
# download the tarball
$ gdown https://drive.google.com/uc?id=1GOC5CiT5Ws2NpiBem4K3g3FRqmGDRcL7
# unpack the ball
$ sudo tar -C /usr/local -xzf libtensorflow_cp39_64OS_2_10_0.tar.gz

TensorFlow 2.9.1

# get a fresh start
$ sudo apt-get update
$ sudo apt-get upgrade
# remove old versions (if found)
$ sudo rm -r /usr/local/lib/libtensorflow*
$ sudo rm -r /usr/local/include/tensorflow
# the dependencies
$ sudo apt-get install wget curl libhdf5-dev libc-ares-dev libeigen3-dev
$ sudo apt-get install libatomic1 libatlas-base-dev zip unzip
# install gdown to download from Google drive (if not already done)
$ sudo -H pip3 install gdown
# download the tarball
$ gdown https://drive.google.com/uc?id=1Z83_RQTvCb2jL2BO1Zdez3x4Qx-XheRk
# unpack the ball
$ sudo tar -C /usr/local -xzf libtensorflow_cp39_64OS_2_9_1.tar.gz

TensorFlow 2.8.0

# get a fresh start
$ sudo apt-get update
$ sudo apt-get upgrade
# remove old versions (if found)
$ sudo rm -r /usr/local/lib/libtensorflow*
$ sudo rm -r /usr/local/include/tensorflow
# the dependencies
$ sudo apt-get install wget curl libhdf5-dev libc-ares-dev libeigen3-dev
$ sudo apt-get install libatomic1 libatlas-base-dev zip unzip
# install gdown to download from Google drive (if not already done)
$ sudo -H pip3 install gdown
# download the tarball
$ gdown https://drive.google.com/uc?id=1dmJKIk8lUi_XCzlVnRgL-UvfVFriRmCG
# unpack the ball
$ sudo tar -C /usr/local -xzf libtensorflow_cp39_64OS_2_8_0.tar.gz

TensorFlow 2.7.0

# get a fresh start
$ sudo apt-get update
$ sudo apt-get upgrade
# remove old versions (if found)
$ sudo rm -r /usr/local/lib/libtensorflow*
$ sudo rm -r /usr/local/include/tensorflow
# the dependencies
$ sudo apt-get install wget curl libhdf5-dev libc-ares-dev libeigen3-dev
$ sudo apt-get install libatomic1 libatlas-base-dev zip unzip
# install gdown to download from Google drive (if not already done)
$ sudo -H pip3 install gdown
# download the tarball
$ gdown https://drive.google.com/uc?id=1kScCKyj0pr265XbCgYmXqXs77xJFe6p1
# unpack the ball
$ sudo tar -C /usr/local -xzf libtensorflow_cp39_64OS_2_7_0.tar.gz

你最终应该将 TensorFlow 库安装在 /usr/local/lib 位置,并将头文件安装在文件夹 usr/local/include/tensorflow/c 中。


转载来自:rpideveloper.com/topic/18


https://www.edatec.cn/cn/ WX:上海晶珩电子






关键词: 树莓派     嵌入式     物联网     工业计算机     工控机     OS    

共1条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]