22楼
系统滴答时钟18b20读取18b20的温度与id:
/* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" #include "stm32_eval.h" #include <stdio.h> volatile int flag; #define Set_B20() GPIO_SetBits(GPIOC, GPIO_Pin_12) //上拉关闭PC12 #define Reset_B20() GPIO_ResetBits(GPIOC, GPIO_Pin_12) //下拉打开PC12 #define Read_B20() GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_12) //读PC12状态 unsigned char Error_Flag=0; unsigned char zf=0; void SysTick_Configuration(void) { /* Setup SysTick Timer for 10 msec interrupts */ if (SysTick_Config(48000)) //SysTick配置 { /* Capture error */ while (1); } /* Configure the SysTick handler priority */ NVIC_SetPriority(SysTick_IRQn, 0x0); //SysTick中断优先级 } /** @addtogroup STM32F10x_StdPeriph_Examples * @{ */ /** @addtogroup EXTI_Config * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ GPIO_InitTypeDef GPIO_InitStructure; //结构体的命名 USART_InitTypeDef USART_InitStructure; //结构体的命名 USART_ClockInitTypeDef USART_ClockInitStructure; //结构体的命名 void RCC_Configuration(void) { RCC_DeInit(); //将外设RCC的所有寄存器重新设为缺省值 RCC_HSICmd(ENABLE); //使能内部高速晶振 while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET); //当SHI晶振就绪则重新设定 RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI); //设置系统时钟,选择SHI时钟为系统时钟 RCC_HSEConfig(RCC_HSE_OFF); //设置外部高速晶振,HSE晶振OFF RCC_LSEConfig(RCC_LSE_OFF); //设置外部低速晶振,LSE晶振OFF //******配置PLL时钟频率为48MHZ*******// RCC_PLLConfig(RCC_PLLSource_HSI_Div2,RCC_PLLMul_8); //RCC_PLLMul_x 即设置PLL时钟频率为 6*x MHz //************************************// RCC_PLLCmd(ENABLE); ////*******************使能PLL while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //PLL就绪 RCC_ADCCLKConfig(RCC_PCLK2_Div4); // ADC时钟=PCLK/2 RCC_PCLK2Config(RCC_HCLK_Div1); // APB2时钟=HCLK RCC_PCLK1Config(RCC_HCLK_Div2); /// APB1时钟=HCLK/2 RCC_HCLKConfig(RCC_SYSCLK_Div1); // AHB时钟=系统时钟 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // 选择PLL为系统时钟 while(RCC_GetSYSCLKSource() != 0x08); //当PLL不是系统时钟 // SystemInit(); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE); //使能APB2外设时钟/****GPIOD时钟和功能复用IO时钟***/ GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG SW_DP使能 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE); GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; // //选择设置GPIO管脚 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; ////设置管脚速率 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; ////设置管脚工作状态,此为推挽输出 GPIO_Init(GPIOD, &GPIO_InitStructure); //初始化GPIOD GPIO_ResetBits(GPIOD,GPIO_Pin_2); //上拉关闭蜂鸣器 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE); GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//LED GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); // GPIOC.0到GPIOC.7输出胃叩缙姜 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能TIM2时钟 } void USART_int(long BaudRate) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1,ENABLE);//使能GPIOA、USART1外设时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //GPIO的输出速率为50MHz GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); /* PA10 USART1_Rx */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //使能外设GPIOC端口时钟 GPIO_Init(GPIOA, &GPIO_InitStructure); /* USARTx configured as follow: - BaudRate = 115200 baud - Word Length = 8 Bits - One Stop Bit - No parity - Hardware flow control disabled (RTS and CTS signals) - Receive and transmit enabled */ USART_InitStructure.USART_BaudRate = BaudRate;//设置USART传输波特率 BaudRate = 9600 可以直接写9600 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//一帧传输或者接收的数据位数为8bit USART_InitStructure.USART_StopBits = USART_StopBits_1;//在帧结尾传输一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//奇偶模式失能 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件流控制失能 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//使能接收发模式 USART_ClockInitStructure.USART_Clock = USART_Clock_Disable; //时钟低电平活动 USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low; //引脚时钟输出低电平时钟 USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge; //第二个时钟边沿开始捕获数据 USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable;//最后一位数据的时钟脉冲不从SCLK输出 USART_ClockInit(USART1, &USART_ClockInitStructure); //引用结构体的成员 USART_Init(USART1, &USART_InitStructure);//USART1初始化 USART_Cmd(USART1, ENABLE);//使能USART1时钟外设 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//使能接受中断 USART_Cmd(USART1, ENABLE); //使能 USART } void delay_18b20(u32 nus) //18b20按照严格的时序工作,这是特定的一个延时函数(自定义) { u16 i; while(nus--) for(i=12;i>0;i--); } void Init18B20(void) //18B20初始化 { u8 aa=0; u8 count =0; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);//使能PC时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; //配置端口GPIOC.12 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;//开漏输出 GPIO_Init(GPIOC, &GPIO_InitStructure); //引用结构体的变量 Set_B20() ; // GPIO_SetBits(GPIOC, GPIO_Pin_12) delay_18b20(1); Reset_B20(); //重置18B20 delay_18b20(480); Set_B20(); // delay_18b20(500); delay_18b20(480); count=0; aa=Read_B20(); //温度读取 /****个人认为限制温度不超过99度,作为一个保护*/ while(!aa && count<100) //判断aa的非和计数器count的值是否都小于100 { aa=Read_B20(); // count++; //count自加1 } if(count>=99) Error_Flag=1; //错误返回值1 else Error_Flag=0; //错误返回值0 } unsigned char Read18B20(void)//按位读取数据 { unsigned char i=0; unsigned char date=0; u8 tempp; for(i=8;i>0;i--) { Reset_B20(); //打开PC12 date>>=1; //标志右移一位 delay_18b20(1); Set_B20(); //关闭 delay_18b20(1); tempp=Read_B20(); //读取温度 if(tempp) //判断tempp是否为1 date|=0x80; // 1000 0000 将最高位填1 ,然后右移,每次最高位由0变1,使8位全部传递完毕 0xff = 1111 1111 delay_18b20(60); //延时 } return(date); //返回值是无符号的字符型的类型 date } void Write18B20(unsigned char date)//向18b20写数据 { unsigned char i=0; for (i=8; i>0; i--) { Reset_B20(); delay_18b20(1); if(date & 0x01) { Set_B20(); } else { Reset_B20();} delay_18b20(60); date>>=1; Set_B20(); delay_18b20(1); } delay_18b20(15); } float Read_T()//读温度 { unsigned char TUp,TDown; unsigned char fTemp; u8 TT=0; float Temp = 0; Init18B20(); Write18B20(0xcc); Write18B20(0x44); Init18B20(); Write18B20(0xcc); Write18B20(0xbe); TDown = Read18B20(); TUp = Read18B20(); if(TUp>0x7f) { TDown=~TDown; TUp=~TUp+1; TUp/=8; zf=1; } else zf=0; fTemp=TDown&0x0f; TUp<<=4; TDown>>=4; TT=TUp|TDown; Temp=TT+(float)fTemp/16; return(Temp); } int main(void) { /*!< At this stage the microcontroller clock setting is already configured, this is done through SystemInit() function which is called from startup file (startup_stm32f10x_xx.s) before to branch to application main. To reconfigure the default setting of SystemInit() function, refer to system_stm32f10x.c file */ /* System Clocks Configuration */ char AddressID[10]; //定义一个字符型数组,长度为10 int k=0; RCC_Configuration(); //配置RCC时钟 USART_int(115200); //波特率的设置 SysTick_Configuration(); //系统滴答时钟的调用 printf(" config done...\r\n"); //打印输出 //delay_ms(1000); Init18B20(); //初始化18b20; Write18B20(0x34); //写入读取地址的命令 delay_18b20(20); //延时 while(1) { if(flag == 300) //判断flag是否等于300 { printf(" the AddressID is:") ; for(k=0;k<8;k++) //字符不能直接输出,要按位输出 { AddressID[k] = Read18B20();//读取地址 printf("%d", AddressID[k]);//输出地址 } printf("\r\n") ; //换行 } if(flag == 500) //判断flag是否等于500 { printf("The Temperature is:%f\r\n",Read_T());//读取温度并输出 printf("===================================================\r\n"); } } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ #ifdef __GNUC__ /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif /* __GNUC__ */ /** * @brief Retargets the C library printf function to the USART. * @param None * @retval None */ PUTCHAR_PROTOTYPE { /* Place your implementation of fputc here */ /* e.g. write a character to the USART */ USART_SendData(EVAL_COM1, (uint8_t) ch); /* Loop until the end of transmission */ while (USART_GetFlagStatus(EVAL_COM1, USART_FLAG_TC) == RESET) {} return ch; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif
23楼
spi总线作业:
/** ****************************************************************************** * @file EXTI/EXTI_Config/main.c * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Main program body ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" #include "stm32_eval.h" #include <stdio.h> #include "spi_flash.h" #define VREF 3.3 void delay_us(u32 n) { u8 j; while(n--) for(j=0;j<10;j++); } void delay_ms(u32 n) { while(n--) delay_us(1000); } #define TxBufferSize1 (countof(TxBuffer1) - 1) #define RxBufferSize1 (countof(TxBuffer1) - 1) #define countof(a) (sizeof(a) / sizeof(*(a))) #define BufferSize (countof(Tx_Buffer)-1) typedef enum { FAILED = 0, PASSED = !FAILED} TestStatus; #define FLASH_WriteAddress 0x00000 #define FLASH_ReadAddress FLASH_WriteAddress #define FLASH_SectorToErase FLASH_WriteAddress #define sFLASH_ID 0xEF3015 //W25X16 //#define sFLASH_ID 0xEF4015 //W25Q16 #define buff_size 16; char rx_buff[],rx_buff_count=0; /* ???????? */ uint8_t Tx_Buffer[4096] ; uint8_t Rx_Buffer[BufferSize]; __IO uint32_t DeviceID = 0; __IO uint32_t FlashID = 0; __IO TestStatus TransferStatus1 = FAILED; // ?????? void Delay(__IO uint32_t nCount); TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); /** @addtogroup STM32F10x_StdPeriph_Examples * @{ */ /** @addtogroup EXTI_Config * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockInitStructure; char *int_to_string(int number,char *strnum)//整形数据转换为字符型 { int j=0,i=0,n=0; char temp; while(number>0) { *(strnum+j)=number%10+48; j++; number=number/10; n++; } for(i=0;i<n/2;i++) { temp=*(strnum+j+i-n); *(strnum+j+i-n)=*(strnum+j-i-1); *(strnum+j-i-1)=temp; } strnum[n]='\0'; return strnum; } void RCC_Configuration(void) { RCC_DeInit(); RCC_HSICmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET); RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI); RCC_HSEConfig(RCC_HSE_OFF); RCC_LSEConfig(RCC_LSE_OFF); RCC_PLLConfig(RCC_PLLSource_HSI_Div2,RCC_PLLMul_9); // 72HMz RCC_PLLCmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); RCC_ADCCLKConfig(RCC_PCLK2_Div4); RCC_PCLK2Config(RCC_HCLK_Div1); RCC_PCLK1Config(RCC_HCLK_Div2); RCC_HCLKConfig(RCC_SYSCLK_Div1); RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); while(RCC_GetSYSCLKSource() != 0x08); //SystemInit(); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE); GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE); GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOD, &GPIO_InitStructure); GPIO_ResetBits(GPIOD,GPIO_Pin_2); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE); GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); } void USART_int(long BaudRate) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); /* PA10 USART1_Rx */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); /* USARTx configured as follow: - BaudRate = 115200 baud - Word Length = 8 Bits - One Stop Bit - No parity - Hardware flow control disabled (RTS and CTS signals) - Receive and transmit enabled */ USART_InitStructure.USART_BaudRate = BaudRate;//?????? USART_InitStructure.USART_WordLength = USART_WordLength_8b;//???????8bit USART_InitStructure.USART_StopBits = USART_StopBits_1;//????1 USART_InitStructure.USART_Parity = USART_Parity_No;//???? USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//??????none USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//?????????? USART_ClockInitStructure.USART_Clock = USART_Clock_Disable; USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low; USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge; USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable; USART_ClockInit(USART1, &USART_ClockInitStructure); USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); USART_Cmd(USART1, ENABLE); } TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while(BufferLength--) { if(*pBuffer1 != *pBuffer2) { return FAILED; } pBuffer1++; pBuffer2++; } return PASSED; } void Delay(__IO uint32_t nCount) { for(; nCount != 0; nCount--); } void ADC_CONFIG(){ ADC_InitTypeDef ADC_InitStructure; #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) /* ADCCLK = PCLK2/2 */ RCC_ADCCLKConfig(RCC_PCLK2_Div2); #else /* ADCCLK = PCLK2/4 */ RCC_ADCCLKConfig(RCC_PCLK2_Div4); #endif ADC_DeInit(ADC1); /* Enable ADC1 and GPIOC clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOB, ENABLE); /* Configure PB0 (ADC Channel14) as analog input -------------------------*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOB, &GPIO_InitStructure); /* ADC1 configuration ------------------------------------------------------*/ ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); /* Enable ADC1 DMA */ ADC_DMACmd(ADC1, ENABLE); /* Enable ADC1 */ ADC_Cmd(ADC1, ENABLE); } int Get_ADC(){ /* ADC1 regular channel configuration */ ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_55Cycles5); /* Enable ADC1 reset calibration register */ ADC_ResetCalibration(ADC1); /* Check the end of ADC1 reset calibration register */ while(ADC_GetResetCalibrationStatus(ADC1)); /* Start ADC1 calibration */ ADC_StartCalibration(ADC1); /* Check the end of ADC1 calibration */ while(ADC_GetCalibrationStatus(ADC1)); /* Start ADC1 Software Conversion */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); return ADC_GetConversionValue(ADC1); } void SPI_TEST() { printf("\r\n这是一个2M SPI总线flash(W25X16)测试 \r\n"); SPI_FLASH_Init(); /* Get SPI Flash Device ID */ DeviceID = SPI_FLASH_ReadDeviceID(); Delay( 200 ); /* Get SPI Flash ID */ FlashID = SPI_FLASH_ReadID(); printf("\r\n FlashID is 0x%X, Manufacturer Device ID is 0x%X\r\n", FlashID, DeviceID); /* Check the SPI Flash ID */ if (FlashID == sFLASH_ID) /* #define sFLASH_ID 0xEF3015 */ { printf("\r\n 检测到华邦flash W25X16 !\r\n"); /* Erase SPI FLASH Sector to write on */ SPI_FLASH_SectorErase(FLASH_SectorToErase); /*写缓存并发送*/ SPI_FLASH_BufferWrite(Tx_Buffer, FLASH_WriteAddress, BufferSize); printf("\r\n写入的数据是:%s \r\t", Tx_Buffer); /* 读出刚才写入的数据*/ SPI_FLASH_BufferRead(Rx_Buffer, FLASH_ReadAddress, BufferSize); printf("\r\n读出的数据是:%s \r\n", Rx_Buffer); /* ????????????????? */ TransferStatus1 = Buffercmp(Tx_Buffer, Rx_Buffer, BufferSize); if( PASSED == TransferStatus1 ) { printf("\r\n 2M SPI总线flash(W25X16)测试成功!\n\r"); } else { printf("\r\n 2M SPI总线flash(W25X16)测试失败!\n\r"); } }// if (FlashID == sFLASH_ID) else { printf("\r\n 未检测到 W25X16 ID!\n\r"); } SPI_Flash_PowerDown(); printf("\r\n=================================================\n\r"); } /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { /*!< At this stage the microcontroller clock setting is already configured, this is done through SystemInit() function which is called from startup file (startup_stm32f10x_xx.s) before to branch to application main. To reconfigure the default setting of SystemInit() function, refer to system_stm32f10x.c file */ /* System Clocks Configuration */ int i=0; int shuzhi = 0; char Buffer[100]; RCC_Configuration(); USART_int(115200); printf(" config done...\r\n"); ADC_CONFIG(); delay_ms(1000); while(1) { for(i=0;i<5;i++) { shuzhi = Get_ADC(); int_to_string(shuzhi,Buffer); Tx_Buffer[i]=Buffer[i]; } SPI_TEST(); delay_ms(1000); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ #ifdef __GNUC__ /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif /* __GNUC__ */ /** * @brief Retargets the C library printf function to the USART. * @param None * @retval None */ PUTCHAR_PROTOTYPE { /* Place your implementation of fputc here */ /* e.g. write a character to the USART */ USART_SendData(EVAL_COM1, (uint8_t) ch); /* Loop until the end of transmission */ while (USART_GetFlagStatus(EVAL_COM1, USART_FLAG_TC) == RESET) {} return ch; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |