这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 高校专区 » 漓东e学堂 » 28号的作业本【更新spi作业】

共24条 3/3 1 2 3 跳转至
菜鸟
2014-12-25 11:56:27     打赏
21楼

菜鸟
2014-12-25 13:55:12     打赏
22楼


系统滴答时钟18b20读取18b20的温度与id:

/* Includes ------------------------------------------------------------------*/    
#include "stm32f10x.h"    
#include "stm32_eval.h"     
#include  <stdio.h>   
  
volatile int flag;    
#define Set_B20()    GPIO_SetBits(GPIOC, GPIO_Pin_12)      //上拉关闭PC12    
#define Reset_B20()  GPIO_ResetBits(GPIOC, GPIO_Pin_12)  //下拉打开PC12    
#define Read_B20()   GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_12)  //读PC12状态    
unsigned char Error_Flag=0;    
unsigned char zf=0;    
void SysTick_Configuration(void)    
{    
  /* Setup SysTick Timer for 10 msec interrupts  */    
  if (SysTick_Config(48000))                //SysTick配置    
  {     
    /* Capture error */     
    while (1);    
  }      
 /* Configure the SysTick handler priority */    
  NVIC_SetPriority(SysTick_IRQn, 0x0);                       //SysTick中断优先级    
}    
    
    
/** @addtogroup STM32F10x_StdPeriph_Examples  
  * @{  
  */    
    
/** @addtogroup EXTI_Config  
  * @{  
  */     
    
/* Private typedef -----------------------------------------------------------*/    
/* Private define ------------------------------------------------------------*/    
/* Private macro -------------------------------------------------------------*/    
/* Private variables ---------------------------------------------------------*/    
GPIO_InitTypeDef   GPIO_InitStructure;  //结构体的命名  
USART_InitTypeDef USART_InitStructure;  //结构体的命名  
USART_ClockInitTypeDef USART_ClockInitStructure;  //结构体的命名  
    
void RCC_Configuration(void)    
{    
  RCC_DeInit();                 //将外设RCC的所有寄存器重新设为缺省值      
        
  RCC_HSICmd(ENABLE);            //使能内部高速晶振      
  while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET);      //当SHI晶振就绪则重新设定     
      
  RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI);      //设置系统时钟,选择SHI时钟为系统时钟    
      
  RCC_HSEConfig(RCC_HSE_OFF);     //设置外部高速晶振,HSE晶振OFF     
  RCC_LSEConfig(RCC_LSE_OFF);      //设置外部低速晶振,LSE晶振OFF      
        
    //******配置PLL时钟频率为48MHZ*******//    
        
  RCC_PLLConfig(RCC_PLLSource_HSI_Div2,RCC_PLLMul_8);    //RCC_PLLMul_x 即设置PLL时钟频率为 6*x MHz    
        
  //************************************//      
        
  RCC_PLLCmd(ENABLE);             ////*******************使能PLL     
  while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);        //PLL就绪      
  RCC_ADCCLKConfig(RCC_PCLK2_Div4);                     //  ADC时钟=PCLK/2      
  RCC_PCLK2Config(RCC_HCLK_Div1);                       //  APB2时钟=HCLK     
  RCC_PCLK1Config(RCC_HCLK_Div2);            /// APB1时钟=HCLK/2      
  RCC_HCLKConfig(RCC_SYSCLK_Div1);         //  AHB时钟=系统时钟     
  RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);       // 选择PLL为系统时钟      
  while(RCC_GetSYSCLKSource() != 0x08);        //当PLL不是系统时钟     
    
        
//  SystemInit();    
        
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE); //使能APB2外设时钟/****GPIOD时钟和功能复用IO时钟***/      
 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG    SW_DP使能      
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE);    
 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG    
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;         // //选择设置GPIO管脚     
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  ////设置管脚速率      
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;     ////设置管脚工作状态,此为推挽输出      
  GPIO_Init(GPIOD, &GPIO_InitStructure);    //初始化GPIOD     
    GPIO_ResetBits(GPIOD,GPIO_Pin_2);     //上拉关闭蜂鸣器      
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE);    
 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG    
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//LED    
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;    
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;    
  GPIO_Init(GPIOC, &GPIO_InitStructure);    
    GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); // GPIOC.0到GPIOC.7输出胃叩缙姜  
      RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能TIM2时钟    
}     
    
void USART_int(long BaudRate)    
{    
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1,ENABLE);//使能GPIOA、USART1外设时钟    
       GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;    
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  //GPIO的输出速率为50MHz  
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;     
    GPIO_Init(GPIOA, &GPIO_InitStructure);    
    /* PA10 USART1_Rx  */    
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;    
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //使能外设GPIOC端口时钟  
    GPIO_Init(GPIOA, &GPIO_InitStructure);    
  /* USARTx configured as follow:  
        - BaudRate = 115200 baud    
        - Word Length = 8 Bits  
        - One Stop Bit  
        - No parity  
        - Hardware flow control disabled (RTS and CTS signals)  
        - Receive and transmit enabled  
  */    
  USART_InitStructure.USART_BaudRate = BaudRate;//设置USART传输波特率  BaudRate = 9600 可以直接写9600    
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;//一帧传输或者接收的数据位数为8bit    
  USART_InitStructure.USART_StopBits = USART_StopBits_1;//在帧结尾传输一个停止位    
  USART_InitStructure.USART_Parity = USART_Parity_No;//奇偶模式失能    
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件流控制失能    
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//使能接收发模式    
    USART_ClockInitStructure.USART_Clock = USART_Clock_Disable;    //时钟低电平活动    
    USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low;      //引脚时钟输出低电平时钟    
    USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge;     //第二个时钟边沿开始捕获数据    
    USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable;//最后一位数据的时钟脉冲不从SCLK输出    
    USART_ClockInit(USART1, &USART_ClockInitStructure); //引用结构体的成员   
  USART_Init(USART1, &USART_InitStructure);//USART1初始化    
  USART_Cmd(USART1, ENABLE);//使能USART1时钟外设    
    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//使能接受中断    
 USART_Cmd(USART1, ENABLE);  //使能 USART  
}    
    
void delay_18b20(u32 nus)    //18b20按照严格的时序工作,这是特定的一个延时函数(自定义)  
{    
    u16 i;    
    while(nus--)    
        for(i=12;i>0;i--);    
}    
    
    
        
void Init18B20(void)  //18B20初始化    
{    
   u8 aa=0;    
   u8 count =0;    
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);//使能PC时钟    
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;  //配置端口GPIOC.12  
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;//开漏输出    
  GPIO_Init(GPIOC, &GPIO_InitStructure); //引用结构体的变量   
   Set_B20() ;   // GPIO_SetBits(GPIOC, GPIO_Pin_12)     
   delay_18b20(1);    
   Reset_B20();  //重置18B20  
      
    
   delay_18b20(480);    
   Set_B20();    
//  delay_18b20(500);    
   delay_18b20(480);    
    
    count=0;    
    aa=Read_B20();         //温度读取    
    /****个人认为限制温度不超过99度,作为一个保护*/    
    while(!aa && count<100)  //判断aa的非和计数器count的值是否都小于100     
   {    
    aa=Read_B20();  //  
    count++;          //count自加1   
   }    
   if(count>=99)    
        Error_Flag=1;  //错误返回值1  
    else    
        Error_Flag=0;  //错误返回值0  
       
}    
      
unsigned char Read18B20(void)//按位读取数据    
{      
unsigned char i=0;    
unsigned char date=0;    
u8 tempp;    
   for(i=8;i>0;i--)    
   {    
    
   Reset_B20();   //打开PC12    
   date>>=1;    //标志右移一位    
   delay_18b20(1);    
   Set_B20();    //关闭    
    delay_18b20(1);    
   tempp=Read_B20();   //读取温度    
    
   if(tempp)   //判断tempp是否为1  
        date|=0x80;     // 1000 0000   将最高位填1 ,然后右移,每次最高位由0变1,使8位全部传递完毕 0xff = 1111 1111    
    delay_18b20(60);  //延时  
    }    
    return(date);  //返回值是无符号的字符型的类型 date  
}    
void Write18B20(unsigned char date)//向18b20写数据    
{    
    unsigned char i=0;    
    
    for (i=8; i>0; i--)    
    {    
        Reset_B20();     
        delay_18b20(1);             
        if(date & 0x01)             
        {       
            Set_B20();    
        }    
        else    
        {   Reset_B20();}    
        delay_18b20(60);    
        date>>=1;          
         Set_B20();    
         delay_18b20(1);    
                
    }    
    delay_18b20(15);    
}    
    
 float Read_T()//读温度    
{       
        unsigned char TUp,TDown;    
    unsigned char fTemp;    
    u8 TT=0;    
    
     float Temp = 0;    
    Init18B20();    
    Write18B20(0xcc);         
    Write18B20(0x44);        
    Init18B20();    
    Write18B20(0xcc);       
    Write18B20(0xbe);       
    TDown = Read18B20();        
    TUp = Read18B20();          
        
    if(TUp>0x7f)          
    {    
        TDown=~TDown;      
        TUp=~TUp+1;     
        TUp/=8;              
        zf=1;             
    }    
    else    
        zf=0;         
    
    fTemp=TDown&0x0f;           
    TUp<<=4;    
    TDown>>=4;    
    TT=TUp|TDown;    
    Temp=TT+(float)fTemp/16;            
    return(Temp);    
}    
                                     
int main(void)    
{    
            
  /*!< At this stage the microcontroller clock setting is already configured,   
       this is done through SystemInit() function which is called from startup  
       file (startup_stm32f10x_xx.s) before to branch to application main.  
       To reconfigure the default setting of SystemInit() function, refer to  
       system_stm32f10x.c file  
     */         
           
  /* System Clocks Configuration */    
    char AddressID[10];  //定义一个字符型数组,长度为10  
    int k=0;    
  RCC_Configuration();  //配置RCC时钟  
  USART_int(115200);  //波特率的设置  
    SysTick_Configuration();  //系统滴答时钟的调用  
    printf(" config done...\r\n"); //打印输出   
     //delay_ms(1000);    
        
    Init18B20();     //初始化18b20;  
    Write18B20(0x34);  //写入读取地址的命令    
    delay_18b20(20);     //延时  
   
    while(1)    
    {    
        if(flag == 300)  //判断flag是否等于300  
        {    
            printf(" the  AddressID is:") ;     
            for(k=0;k<8;k++)     //字符不能直接输出,要按位输出    
        {    
                    AddressID[k] = Read18B20();//读取地址    
          printf("%d", AddressID[k]);//输出地址    
        }    
            printf("\r\n")  ; //换行   
        }    
        if(flag == 500)  //判断flag是否等于500  
        {               
            printf("The Temperature is:%f\r\n",Read_T());//读取温度并输出    
                      
            printf("===================================================\r\n");    
    }    
    }    
}    
    
    
    
#ifdef  USE_FULL_ASSERT    
    
/**  
  * @brief  Reports the name of the source file and the source line number  
  *         where the assert_param error has occurred.  
  * @param  file: pointer to the source file name  
  * @param  line: assert_param error line source number  
  * @retval None  
  */    
void assert_failed(uint8_t* file, uint32_t line)    
{     
  /* User can add his own implementation to report the file name and line number,  
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */    
    
  /* Infinite loop */    
  while (1)    
  {    
  }    
}    
    
#endif    
    
/**  
  * @}  
  */     
    
/**  
  * @}  
  */     
    
#ifdef __GNUC__    
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf  
     set to 'Yes') calls __io_putchar() */    
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)    
#else    
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)    
#endif /* __GNUC__ */    
      
    
    
/**  
  * @brief  Retargets the C library printf function to the USART.  
  * @param  None  
  * @retval None  
  */    
PUTCHAR_PROTOTYPE    
{    
  /* Place your implementation of fputc here */    
  /* e.g. write a character to the USART */    
  USART_SendData(EVAL_COM1, (uint8_t) ch);    
    
  /* Loop until the end of transmission */    
  while (USART_GetFlagStatus(EVAL_COM1, USART_FLAG_TC) == RESET)    
  {}    
    
  return ch;    
}    
    
#ifdef  USE_FULL_ASSERT    
    
/**  
  * @brief  Reports the name of the source file and the source line number  
  *         where the assert_param error has occurred.  
  * @param  file: pointer to the source file name  
  * @param  line: assert_param error line source number  
  * @retval None  
  */    
void assert_failed(uint8_t* file, uint32_t line)    
{     
  /* User can add his own implementation to report the file name and line number,  
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */    
    
  /* Infinite loop */    
  while (1)    
  {    
  }    
}    
    
#endif

 



菜鸟
2014-12-25 14:30:41     打赏
23楼

spi总线作业:

/** 
  ****************************************************************************** 
  * @file    EXTI/EXTI_Config/main.c  
  * @author  MCD Application Team 
  * @version V3.5.0 
  * @date    08-April-2011 
  * @brief   Main program body 
  ****************************************************************************** 
  * @attention 
  * 
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS 
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE 
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY 
  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING 
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE 
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. 
  * 
  * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> 
  ****************************************************************************** 
  */   
  
/* Includes ------------------------------------------------------------------*/  
#include "stm32f10x.h"  
#include "stm32_eval.h"  
#include <stdio.h>  
#include "spi_flash.h"  
#define VREF 3.3  
  
void delay_us(u32 n)  
{  
    u8 j;  
    while(n--)  
    for(j=0;j<10;j++);  
}  
  
void  delay_ms(u32 n)  
{  
    while(n--)  
    delay_us(1000);  
}  
  
  
#define TxBufferSize1   (countof(TxBuffer1) - 1)  
#define RxBufferSize1   (countof(TxBuffer1) - 1)  
#define countof(a)      (sizeof(a) / sizeof(*(a)))  
#define  BufferSize (countof(Tx_Buffer)-1)  
typedef enum { FAILED = 0, PASSED = !FAILED} TestStatus;  
#define  FLASH_WriteAddress     0x00000  
#define  FLASH_ReadAddress      FLASH_WriteAddress  
#define  FLASH_SectorToErase    FLASH_WriteAddress  
#define  sFLASH_ID              0xEF3015     //W25X16  
//#define  sFLASH_ID              0xEF4015   //W25Q16  
#define buff_size  16;       
char rx_buff[],rx_buff_count=0;  
/* ???????? */  
uint8_t Tx_Buffer[4096] ;  
uint8_t Rx_Buffer[BufferSize];  
__IO uint32_t DeviceID = 0;  
__IO uint32_t FlashID = 0;  
__IO TestStatus TransferStatus1 = FAILED;  
  
// ??????  
void Delay(__IO uint32_t nCount);  
TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);  
  
/** @addtogroup STM32F10x_StdPeriph_Examples 
  * @{ 
  */  
  
/** @addtogroup EXTI_Config 
  * @{ 
  */   
  
/* Private typedef -----------------------------------------------------------*/  
/* Private define ------------------------------------------------------------*/  
/* Private macro -------------------------------------------------------------*/  
/* Private variables ---------------------------------------------------------*/  
GPIO_InitTypeDef   GPIO_InitStructure;  
USART_InitTypeDef USART_InitStructure;  
USART_ClockInitTypeDef USART_ClockInitStructure;  
  
char *int_to_string(int number,char *strnum)//整形数据转换为字符型  
{  
int j=0,i=0,n=0;  
char temp;  
while(number>0)  
{  
*(strnum+j)=number%10+48;  
j++;  
number=number/10;  
n++;  
}  
  
      
for(i=0;i<n/2;i++)  
{  
temp=*(strnum+j+i-n);  
*(strnum+j+i-n)=*(strnum+j-i-1);  
*(strnum+j-i-1)=temp;  
}  
strnum[n]='\0';  
return strnum;  
}  
  
void RCC_Configuration(void)  
{  
  RCC_DeInit();  
      
  RCC_HSICmd(ENABLE);  
  while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET);  
    
  RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI);  
    
  RCC_HSEConfig(RCC_HSE_OFF);  
  RCC_LSEConfig(RCC_LSE_OFF);  
  RCC_PLLConfig(RCC_PLLSource_HSI_Div2,RCC_PLLMul_9); //  72HMz  
  RCC_PLLCmd(ENABLE);  
  while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);  
  RCC_ADCCLKConfig(RCC_PCLK2_Div4);  
  RCC_PCLK2Config(RCC_HCLK_Div1);  
  RCC_PCLK1Config(RCC_HCLK_Div2);  
  RCC_HCLKConfig(RCC_SYSCLK_Div1);  
  RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);  
  while(RCC_GetSYSCLKSource() != 0x08);  
  
      
    //SystemInit();  
      
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE);  
 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG  
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO, ENABLE);  
 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;  
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  
  GPIO_Init(GPIOD, &GPIO_InitStructure);  
    GPIO_ResetBits(GPIOD,GPIO_Pin_2);  
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE);  
 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//disable JTAG  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;  
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  
  GPIO_Init(GPIOC, &GPIO_InitStructure);  
    GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7);  
      RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);  
}   
  
void USART_int(long BaudRate)  
{  
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1,ENABLE);  
       GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;  
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;   
    GPIO_Init(GPIOA, &GPIO_InitStructure);  
    /* PA10 USART1_Rx  */  
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;  
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;  
    GPIO_Init(GPIOA, &GPIO_InitStructure);  
  /* USARTx configured as follow: 
        - BaudRate = 115200 baud   
        - Word Length = 8 Bits 
        - One Stop Bit 
        - No parity 
        - Hardware flow control disabled (RTS and CTS signals) 
        - Receive and transmit enabled 
  */  
  USART_InitStructure.USART_BaudRate = BaudRate;//??????  
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;//???????8bit  
  USART_InitStructure.USART_StopBits = USART_StopBits_1;//????1  
  USART_InitStructure.USART_Parity = USART_Parity_No;//????  
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//??????none  
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//??????????  
    USART_ClockInitStructure.USART_Clock = USART_Clock_Disable;       
    USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low;        
    USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge;        
    USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable;  
    USART_ClockInit(USART1, &USART_ClockInitStructure);  
  USART_Init(USART1, &USART_InitStructure);  
  USART_Cmd(USART1, ENABLE);  
    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);  
 USART_Cmd(USART1, ENABLE);  
}  
  
TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)  
{  
  while(BufferLength--)  
  {  
    if(*pBuffer1 != *pBuffer2)  
    {  
      return FAILED;  
    }  
  
    pBuffer1++;  
    pBuffer2++;  
  }  
  return PASSED;  
}  
  
void Delay(__IO uint32_t nCount)  
{  
  for(; nCount != 0; nCount--);  
}  
  
void ADC_CONFIG(){  
    ADC_InitTypeDef ADC_InitStructure;  
    #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)  
  /* ADCCLK = PCLK2/2 */  
  RCC_ADCCLKConfig(RCC_PCLK2_Div2);   
#else  
  /* ADCCLK = PCLK2/4 */  
  RCC_ADCCLKConfig(RCC_PCLK2_Div4);   
#endif  
ADC_DeInit(ADC1);  
  /* Enable ADC1 and GPIOC clock */  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOB, ENABLE);  
      
    /* Configure PB0 (ADC Channel14) as analog input -------------------------*/  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;  
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;  
  GPIO_Init(GPIOB, &GPIO_InitStructure);  
      
    
  /* ADC1 configuration ------------------------------------------------------*/  
  ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;  
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;  
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;  
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;  
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;  
  ADC_InitStructure.ADC_NbrOfChannel = 1;  
  ADC_Init(ADC1, &ADC_InitStructure);  
  
  
  /* Enable ADC1 DMA */  
  ADC_DMACmd(ADC1, ENABLE);  
    
  /* Enable ADC1 */  
  ADC_Cmd(ADC1, ENABLE);  
  
}  
  
int Get_ADC(){  
     /* ADC1 regular channel configuration */   
  ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_55Cycles5);  
    /* Enable ADC1 reset calibration register */     
  ADC_ResetCalibration(ADC1);  
  /* Check the end of ADC1 reset calibration register */  
  while(ADC_GetResetCalibrationStatus(ADC1));  
  
  /* Start ADC1 calibration */  
  ADC_StartCalibration(ADC1);  
  /* Check the end of ADC1 calibration */  
  while(ADC_GetCalibrationStatus(ADC1));  
       
  /* Start ADC1 Software Conversion */   
  ADC_SoftwareStartConvCmd(ADC1, ENABLE);  
      
    return ADC_GetConversionValue(ADC1);  
}  
  
  
void SPI_TEST()  
{  
    printf("\r\n这是一个2M SPI总线flash(W25X16)测试 \r\n");  
    SPI_FLASH_Init();  
    /* Get SPI Flash Device ID */  
    DeviceID = SPI_FLASH_ReadDeviceID();  
    Delay( 200 );  
    /* Get SPI Flash ID */  
    FlashID = SPI_FLASH_ReadID();  
    printf("\r\n FlashID is 0x%X,  Manufacturer Device ID is 0x%X\r\n", FlashID, DeviceID);  
    /* Check the SPI Flash ID */  
    if (FlashID == sFLASH_ID)  /* #define  sFLASH_ID  0xEF3015 */  
    {  
        printf("\r\n 检测到华邦flash W25X16 !\r\n");  
        /* Erase SPI FLASH Sector to write on */  
        SPI_FLASH_SectorErase(FLASH_SectorToErase);        
          
        /*写缓存并发送*/  
        SPI_FLASH_BufferWrite(Tx_Buffer, FLASH_WriteAddress, BufferSize);  
        printf("\r\n写入的数据是:%s \r\t", Tx_Buffer);  
          
        /* 读出刚才写入的数据*/  
        SPI_FLASH_BufferRead(Rx_Buffer, FLASH_ReadAddress, BufferSize);  
        printf("\r\n读出的数据是:%s \r\n", Rx_Buffer);  
          
        /* ????????????????? */  
        TransferStatus1 = Buffercmp(Tx_Buffer, Rx_Buffer, BufferSize);  
          
        if( PASSED == TransferStatus1 )  
        {      
            printf("\r\n 2M SPI总线flash(W25X16)测试成功!\n\r");  
        }  
        else  
        {          
            printf("\r\n 2M SPI总线flash(W25X16)测试失败!\n\r");  
        }  
    }// if (FlashID == sFLASH_ID)  
    else  
    {      
        printf("\r\n 未检测到 W25X16 ID!\n\r");  
    }  
      
    SPI_Flash_PowerDown();    
    printf("\r\n=================================================\n\r");  
}  
/* Private functions ---------------------------------------------------------*/  
  
/** 
  * @brief  Main program. 
  * @param  None 
  * @retval None 
  */  
int main(void)  
{  
          
  /*!< At this stage the microcontroller clock setting is already configured,  
       this is done through SystemInit() function which is called from startup 
       file (startup_stm32f10x_xx.s) before to branch to application main. 
       To reconfigure the default setting of SystemInit() function, refer to 
       system_stm32f10x.c file 
     */       
         
  /* System Clocks Configuration */  
    int i=0;  
    int shuzhi = 0;  
     char Buffer[100];  
  RCC_Configuration();  
  USART_int(115200);  
 printf(" config done...\r\n");  
    ADC_CONFIG();  
    delay_ms(1000);  
    while(1)  
    {  
          
        for(i=0;i<5;i++)  
        {   
             shuzhi = Get_ADC();  
              int_to_string(shuzhi,Buffer);  
            Tx_Buffer[i]=Buffer[i];  
    }  
      SPI_TEST();  
        delay_ms(1000);  
    }  
}  
  
  
  
  
#ifdef  USE_FULL_ASSERT  
  
/** 
  * @brief  Reports the name of the source file and the source line number 
  *         where the assert_param error has occurred. 
  * @param  file: pointer to the source file name 
  * @param  line: assert_param error line source number 
  * @retval None 
  */  
void assert_failed(uint8_t* file, uint32_t line)  
{   
  /* User can add his own implementation to report the file name and line number, 
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */  
  
  /* Infinite loop */  
  while (1)  
  {  
  }  
}  
  
#endif  
  
/** 
  * @} 
  */   
  
/** 
  * @} 
  */   
  
#ifdef __GNUC__  
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf 
     set to 'Yes') calls __io_putchar() */  
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)  
#else  
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)  
#endif /* __GNUC__ */  
    
  
  
/** 
  * @brief  Retargets the C library printf function to the USART. 
  * @param  None 
  * @retval None 
  */  
PUTCHAR_PROTOTYPE  
{  
  /* Place your implementation of fputc here */  
  /* e.g. write a character to the USART */  
  USART_SendData(EVAL_COM1, (uint8_t) ch);  
  
  /* Loop until the end of transmission */  
  while (USART_GetFlagStatus(EVAL_COM1, USART_FLAG_TC) == RESET)  
  {}  
  
  return ch;  
}  
  
#ifdef  USE_FULL_ASSERT  
  
/** 
  * @brief  Reports the name of the source file and the source line number 
  *         where the assert_param error has occurred. 
  * @param  file: pointer to the source file name 
  * @param  line: assert_param error line source number 
  * @retval None 
  */  
void assert_failed(uint8_t* file, uint32_t line)  
{   
  /* User can add his own implementation to report the file name and line number, 
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */  
  
  /* Infinite loop */  
  while (1)  
  {  
  }  
}  
  
#endif  
  
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/  

 


高工
2015-01-06 21:36:30     打赏
24楼
继续努力

共24条 3/3 1 2 3 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]
站长统计