这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 综合技术 » 物联网技术 » 共模抑制和仪表放大器

共2条 1/1 1 跳转至

共模抑制和仪表放大器

工程师
2008-07-06 11:37:05     打赏
在工业应用中,共模电压是个经常存在的威胁。通常需要测量含有大的共模成份的微弱差模信号。这些远距离信号和内部固有的50Hz/60Hz的电网干扰往往对测量造成相当的困难。因此本文探讨仪表放大器及其与应用相关的共模电压的范围和共模抑制问题。我们从共模电压和共模抑制的定义谈起,然后看看不同仪表放大器的结构,并验证在特殊应用中的共模电压范围和共模抑制是否适当。

2 共模抑制和差模信号

2.1 共模抑制

    仪表放大器将两个信号的差值放大。典型的差模信号来自传感器件,诸如电阻桥或热电偶。图1示出了仪表放大器的典型应用,来自电阻桥的差模电压被AD620(低功耗,低成本,集成仪表放大器)放大。在热电偶和电阻桥的应用中,差模电压总是相当小(几毫伏到十几毫伏)。而两个输入端输入的同极性、同幅值的电压约为2.5V,还有对测量无用的共模分量,所以理想的仪表放大器应该放大输入端两信号的差值,任何共模分量都必须被抑制。事实上,抑制共模分量是使用仪表放大器的唯一原因。实践中,仪表放大器从没有彻底抑制掉共模信号,输出端总会有一些残余成份。

    共模抑制比(CMRR)是用来衡量共模信号被放大器抑制程度的一个综合指标,它由下式定义

  chh_1.gif (2284 字节)

图1 在一个典型的仪表放大器的应用中,输入共模电压由来自桥的直流偏压(VS/2)和输入线中检拾的任何共模噪声组成。共模电压的一部分总会出现在仪表放大器的输出端。

chh_2.gif (560 字节)  

    式中的Gain是放大器的差模增益,Vcm是输入端存在的共模电压,Vout是输入共模电压在输出端的结果。

    代入具体值,如AD620集成仪表放大器所设置增益为10时,CMRR为100dB,图1中共模电压为2.5V,由(1)式求出它在输出端的电压为250m V。有上面设定,注意到由输入和输出失调电压所引起的输出电压约为1.5mV,这说明作为误差源,CMRR并没有失调电压重要。至此,只讨论了直流信号的共模抑制比。

2.2 交流和直流共模抑制比

    在图1中,共模信号可以是稳态的直流电压(如来自电桥的2.5V电压),或是来自外部干扰。在工业应用中,最普通的外部干扰从50Hz/60Hz输电干线检拾而来(例如来自照明灯,电机或任何在输电干线上运行的设备)。在不同的测量应用中,仪表放大器输入端的干扰基本相等,因此在这里干扰信号也被看作共模信号,被叠加在输入直流共模电压上,在输出端得到的是这个输入共模信号的衰减形式,衰减程度取决于该频率下的CMRR

虽然直流失调电压可以通过微调和校准轻易除去,而输出端的交流误差却很麻烦。例如,如果输入回路从输电干线检拾到50Hz或60Hz的干扰,那么输出端的交流电压会降低整个应用的分辨度。滤除干扰代价很昂贵,并且仅在对速度要求不高的应用中才可行。显然,整个频率范围内的高共模抑制有助于减小外部共模干扰的影响。

    所以,实践中在整个频率范围内来讨论CMRR比讨论它在直流时的情况要有意义得多。集成仪表放大器数据手册列出了在50Hz/60Hz时的CMRR,图解部分给出CMRR随频率变化的曲线(见图2)。

 

图2 单电源AD623的CMRR,100Hz以前很平坦,之后开始下降。从图看出当编程增益增加时,CMRR也随之增加。

    图2表明AD623(低价格集成仪表放大器)CMRR在频率范围内变化的情况。100Hz以前保持平坦,之后(大于100Hz)开始下降,可以看出,50Hz/60Hz电网干扰会被很好的抑制。还要注意电网频率的谐波干扰,在工业环境中,电网频率谐波可以达到第七谐波(350Hz/420Hz)。此时,CMRR降到大约90dB(增益为10)。这使得- 70dB的共模增益仍足以抑制大多数共模干扰。

3 不同结构的仪表放大器

    现在考察仪表放大器的不同结构,结构的选择和无源元件的精确度会影响交直流的CMRR

3.1 二运放仪表放大器

    图3是一个基本二运放仪表放大器的电路图,差模增益可由式(2)给出

2

这里R1=R4R2=R3,如果R1=10kΩ,R2=1kΩ,差模增益为11,从式(2)可知,根本不可能使编程增益为1。

3.1.1 二运放仪表放大器的共模增益

  chh_5.gif (2011 字节)

图3 二运放仪表放大器的输入共模范围随差模增益降低        而降低(不可能得到单位增益)。电阻的不匹配决定直流和低频时的CMRR,而高频CMRR取决于通过A1的Vin- 的相移。

直流共模电压引起的输出电压由式(3)给出

chh_6.gif (474 字节)

    运用式(1),可得电路的CMRR的表达式为

chh_7.gif (715 字节)

    因为分母中的电阻比总是接近1,不需要考虑仪表放大器的增益,我们可得到,二运放仪表放大器的CMRR随差模增益的增加而增加。

    在上述电阻网络中,由于存在误差,实际电阻值不可能完全等于标称值,即存在失配,可以将R1R3的实际值比它与R2R4之差值的百分率定义为失配。式(4)可以改写为

chh_8.gif (488 字节)

    式中Mismatch为失配率。

    编程增益的四个电阻间的任何不匹配都会直接影响CMRR。在环境温度下,精密的电阻网络通过微调可以达到最大精确度。电阻的温度漂移造成的任何失配都会加剧CMRR的降低。

    显而易见,高共模抑制的关键是电阻网络,因此电阻比和相对应的漂移两者都要很好的匹配,而电阻的绝对值和他们的绝对漂移却不重要,关键在于匹配。

    集成仪表放大器特别适合于增益编程电阻的比值匹配和温度跟踪。制作在硅片上的薄膜电阻的最初容差达到± 20%,制作过程中的激光修整使电阻间的比例误差减小至0.01%。此外,各薄膜电阻值和温度系数之间的相关变化很小,通常小于3×10- 6/℃。

    图4说明在环境温度下电阻失配的实践结果。图3中,电路CMRR的测量(增益为11)用到4个电阻,其失配约为0.1%(R1=9999.5Ω,R2=999.76Ω,R3=1000.2Ω,R4=9997.7Ω)。直流CMRR的值约为84dB(理论值为85dB),当频率增加时,CMRR迅速下降。图4同时给出了电网干扰的输出电压的示波器波形。180Hz时200mV(峰-峰)谐波引起的输出电压约为800m V。由上述设定,一个输入范围为0~2.5V的12位数据采集系统的1sb权重为610mV。

    A1同相端的Vin- 信号经A1后产生的相移或延时将导致Vin- 和A1的输出信号间出现向量误差,引起整个频率范围内CMRR的降低。为保证一定的CMRRVin- 和A1输出端的共模信号应有相同的相位和幅度,这只有在A1没有延时时才可能做到。选择一个匹配的高速双运放可以扩展频率范围,从而使CMRR保持平坦,但另一方面,高速运放会检拾外部高频干扰。另一个解决方法是在A1的反相输入端和地端之间接一个微调电容,缺点是必须手动微调。

     所以图4的CMRR(在频率范围内)受两个截然不同的参数的影响。在低频时,CMRR与编程增益电阻的失配直接关联,高频时,运放的差模闭环增益引起CMRR的降低。

3.1.2 二运放仪表放大器的共模范围

    二运放仪表放大器的输入共模范围受编程增益的影响。图3中,A1工作在闭环增益为1.1时,输入端的任一共模电压都被放大(即输入共模电压经1.1倍放大后出现在A1的输出端)。

    现在讨论仪表放大器可编程增益为1.1时的情况(R1=1kΩ,R2=10kΩ,R3=10kΩ,R4=1kΩ)。A1的闭环增益为11,因为共模电压会被放大,所以输入共模范围受A1输出摆动幅度的严格限制。在应用中,强制性使用低电压引起的问题特别严重,这种情况下,运用满幅度放大器会增加一些摆动范围以缓解这个问题。

3.2 三运放仪表放大器

图5是三运放仪表放大器的结构,是分离和集成仪表放大器最常选的结构。整个增益的传输函数很复杂,当R1=R2=R3=R4时,传输函数可以简化为

6

     R5R6设置为相同值(通常在10~50kΩ)。简单地调节RG的值,电路的整个增益可由单位值调至任意高的值。




关键词: 共模     抑制     仪表     放大器     应用     电压     信号     干扰         

菜鸟
2010-05-17 10:20:58     打赏
2楼

谢谢,呵呵,还没有玩吧?
等待!


共2条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]