为什么说工业软件是智能制造的核心?
智能制造是新一轮的工业革命
为什么说工业软件是智能制造的核心?
智能制造是新一轮的工业革命
从实用和广义的角度上看,智能制造的概念可以总结为:智能制造是以智能技术为代表的技术为指导的先进制造,包括以智能化、网络化、数字化和自动化为特征的先进制造技术的应用,涉及制造过程中的设计、工艺、装备(结构设计和优化、控制、软件、集成)和管理。
与此前历次工业革命相比,制造的核心地位仍未改变,但智能化成为制造的新特征与内涵。
工业革命逐渐解放制造人力。制造本质上是从“原材料”到“产品”的过程,内容可以简化为工艺设计、工艺参数、过程控制、执行四个步骤。
在历次工业革命中,制造工业走过了机械化、电气化、自动化(数字化)、智能化的道路,在这个过程中,工具(装备)做的事越来越多,人逐步把精力更多的投入到创造性的工作中。
若把“制造”看作从起点到终点的出行问题,制造业历次升级过程可以分别形象为自行车(机械化)-电动车(电气化)-汽车(自动化)-自动驾驶(智能化),其中人更多的参与到决策过程中,对人力的要求越来越低,效率大幅提升。
智能制造的发展是由体系建立到精确模型建立的过程,实现智能制造,首先要解决智能维护大问题,再做智能预测,最后做到无忧系统与大价值。具体来看分为以下五个阶段:
第一阶段:全员生产系统(TPS)。由日本提出来的,建立的5S 标准(整理、整顿、清扫、清洁、素养)是七八十年代整个制造系统当中引以为核心的标准,固化在了组织和对人培训方面。
第二阶段:精益制造和6-Sigma。它的核心价值是如何以数据作为标准建立管理体系,本质是消除浪费。
在这个基从础下面包括质量管理体系、产品全生命周期管理体系等等。这个时候数据真正在制造使用过程中发挥作用。
第三阶段:数据驱动的预测性建模分析。以数据驱动的预测性建模分析,指的是怎么把隐性的问题显性化,显性化之后解决隐性的问题,避免显性问题的发生。
第四阶段,以预测为基础的资源有效性运营决策优化。对于过去产生的关联性都能够建模之后,怎么根据系统生产、环境、人员多方要素变化进行实时动态优化。
第五阶段,“信息-物理”系统。它是建立在对于所有设备本身运行的环境、活动目标非常精确建模基础上,这个时候产生知识的应用和传承问题。
智能制造最终要具备状态感知、实时分析、自主决策、精准执行的特征,使得企业更柔性、更智能、更集成化,并且实现了大部分或者全部的智能化技术应用,目标是实现知识的获取、规模化利用与传承。
目前我国处于转型的最重要时期,还没有完全到达第三个阶段。
制造范式转型,关键在于数据流通与工艺建模
工业体系交替的背后是制造范式的改变。
从传统到现代再到智能制造,研发生产流程不断进行重构与组织重建,创新流程的边界日渐模糊。
传统制造下研发/制造流程是串行的,现代制造下变革为并行,在未来智能制造体系下的研发/制造流程将是一体化,所有的过程是并行、并发的,数据的高速、有序的自由流通,各个环节高度互动和协同,组织是灵活动态的组织单元,由此而获得非常高的研发效率。