二、电感最小值选取
公式(7)、(12)分别给出了通用的Buck和Boost型开关电源的电感最小值选取公式。对像手机、PMP、数据卡这类的消费类电子用到的低功率开关电源,Vsw和VD都在0.1V~0.3V之间,因此可对公式(7)、(12)进行简化,得到:
以PM6658的Buck电源MSMC为例,Vi为3.8V,Vo为1.2V,r为0.3,fsw为1.6MHz,Io_rated为500mA则Lmin为3.08uH。若选用的电感容差为20%,1.25*Lmin=3.85uH。据计算值最近的标准电感值为4.7uH,所以PM6658 spec推荐的最小电感值就是4.7uH。
三、电感参数选取
除了上面讲的感值和容差外,电感还有以下重要参数:自激频率(fo),DCR,饱和电流(Isat)和均方根电流(IRMS)。尽管参数很多,但准则只有一条:尽量保证fsw下电感的阻抗最小,让实际电路和理想模型吻合,降低电感的功耗和热量,提高电源的效率。
3.1 自激频率fo
理想模式的电感,其阻抗与频率呈线性关系,会随频率升高而增大。实际电感模型如图3-1-1所示,由电感L串联RDCR和寄生电容C并联而成,存在自激频率fo。频率小于fo时呈感性,大于fo时呈容性,在fo处阻抗最大。
经验值:电感的自激频率fo最好选择大于10倍开关频率fsw。
3.2 直流电阻RDCR
电感的直流电阻RDCR自身会消耗一部分功率,使开关电源的效率下降,更要命的是这种消耗会通过电感升温的方式进行,这样又会降低电感的感值,增大纹波电流和纹波电压,所以对开关电源来讲,应根据芯片数据手册提供的DCR典型值或最大值的基础上,尽可能选择DCR小的电感。
3.3 饱和电流I(SAT)和均方根电流I(RMS)(电感烧毁问题)
电感的饱和电流ISAT指其感值下降了标称值的10%~30%所能通过的最大电流。
电感的均方根电流IRMS指电感温度由室温25℃上升至65℃时能通过的均方根电流。
ISAT和IRMS的大小取决于电感磁饱和与温度上升至65℃的先后顺序。
当标称输出电流大于ISAT时,电感饱和,感值下降,纹波电流、纹波电压增大,效率降低。因此,电感的ISAT和IRMS中的最小值应高于开关电源额定输出电流的1.3以上。
四、电感类型选取
在明确了最小电感值的计算和电感参数的选取后,有必要对市面上一些流行的电感类型进行比较分析,下面会围绕:大电感和小电感、绕线电感和叠层电感、磁屏蔽电感和非屏蔽电感进行对比说明。
4.1 同尺寸下的大电感和小电感
这里“同尺寸”指电感的物理形状大致相同,“大小”指标称容量不同。一般小容量的电感具有如下优势:
● 较低的DCR,在重载时会有更高的效率和较少的发热;
● 更大的饱和电流;
● 更快的负载瞬态响应速度;
而大容量的电感具有较低的纹波电流和纹波电压,较低的AC和传导损失,在轻载时有较高的效率。
4.2 绕线电感和叠层电感
相比于绕线电感,叠层电感具有如下优势:
具有较小的物理尺寸,占用较少的PCB面积和高度空间;
具有较低的DCR,在重载时有更高的效率;
具有较低的AC损失,在轻载时有更高的效率;
但是,叠层电感的ISAT也较小,因此其在重载时会有较大的纹波电流,导致输出的纹波电压也相应增大。
4.3 磁屏蔽电感和非屏蔽电感
非屏蔽电感会有较低的价格和较小的尺寸,但也会产生EMI。磁屏蔽电感会有效屏蔽掉EMI,因此更适合无线设备这样EMI敏感的应用,此外它还具有较低的DCR。
五、电感选取总结
根据前面几节内容的介绍,我们可以按照以下步骤选择适合的电感:
(1)、计算Lmin和推荐电感参数:fo、RDC、ISAT、IRMS。
(2)、在保证(1)的前提下,依据物理尺寸要求和性价比,折中选择:大电感还是小电感,叠层电感还是绕线电感,磁屏蔽电感还是非屏蔽电感。
六、开关电源布局
以Buck电路为例,不管开关管是由闭合-打开还是打开-闭合,电流发生瞬变的部分都如图(c)所示,它们是会产生非常丰富的谐波分量的上升沿或下降沿。通俗的讲,这些会产生瞬变的电流迹线就是所谓的“交流”,其余部分是“直流”。当然这里交直流的区别不是传统教科书上的定义,而是指开关管的PWM频率只是“交流”fft变换里的一个分量,而在“直流”里这样的谐波分量很低,可忽略不计。所以储能电感属于“直流”也就不奇怪,毕竟电感具有阻止电流发生瞬变的特性。因此,在开关电源布局时,“交流”迹线是最重要和最需要仔细考虑的地方。这也是需要牢记的唯一基本定律,并适用于其它法则和拓扑。下图表示了Boost电路电流瞬变迹线,注意它和Buck电路的区别。
1inch长,50mm宽,1.4mil厚(1盎司)的铜导线在室温下的电阻为2.5mΩ,若流过电流为1A,则产生的压降是2.5mV,不会对绝大部分IC产生不利影响。然而,这样1inch长的导线的寄生电感为20nH,由V=L*dI/dt可知,若电流变化快速,可能产生很大的压降。典型的Buck电源在开关管由开-关时产生的瞬变电流是输出电流的1.2倍,由关-开是产生的瞬变电流是输出电流的0.8倍。FET型开关管的转换时间是30ns,Bipolar型的是75ns,所以开关电源“交流”部分1inch的导线,流过1A瞬变电流时,就会产生0.7V的压降。0.7V相比于2.5mV,增大了近300倍,所以高速开关部分的布局就显得尤为重要。
尽可能地把所有外围器件都紧密地放在转换器的旁边,减少走线的长度会是最理想的布局方式,但限于极其有限的布局空间,实际往往做不到,因此有必要根据瞬变压降的严重程度按优先级顺序进行。对Buck电路,输入旁路电容须尽可能靠近IC放置,接下来是输入电容,最后是二极管,采用短而粗的迹线将其一端与SW相连,另一端与地相连。而对Boost电路布局来说,则是按输出旁路电容,输出电容和二极管的优先级顺序进行布局。
共6条
1/1 1 跳转至页
[文章]开关电源该如何配置电感2
关键词: 开关电源 如何 配置 电感
共6条
1/1 1 跳转至页
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |