姿态解算
姿态解算,网上用得最多的就是先求四元数,再转化成角度了。资料显示,相对于另两种旋转表示法(矩阵和欧拉角),四元数具有某些方面的优势,如速度更快、提供平滑插值、有效避免万向锁问题、存储空间较小等等 。
下面列出几个常用的算法,都是用C语言的格式。
1、让四轴飞的匿名四轴版
*************************************************
//默认参数 10 0.008
#define Kp 10.0f // proportional gain governs rate of convergence to accelerometer/magnetometer
#define Ki 0.008f // integral gain governs rate of convergence of gyroscope biases
#define halfT 0.001f // half the sample period采样周期的一半
float q0 = 1, q1 = 0, q2 = 0, q3 = 0; // quaternion elements representing the estimated orientation
float exInt = 0, eyInt = 0, ezInt = 0; // scaled integral error
void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az)
{
float norm;
// float hx, hy, hz, bx, bz;
float vx, vy, vz;// wx, wy, wz;
float ex, ey, ez;
// 先把这些用得到的值算好
float q0q0 = q0*q0;
float q0q1 = q0*q1;
float q0q2 = q0*q2;
// float q0q3 = q0*q3;
float q1q1 = q1*q1;
// float q1q2 = q1*q2;
float q1q3 = q1*q3;
float q2q2 = q2*q2;
float q2q3 = q2*q3;
float q3q3 = q3*q3;
if(ax*ay*az==0)
return;
norm = sqrt(ax*ax + ay*ay + az*az); //acc数据归一化
ax = ax / norm;
ay = ay / norm;
az = az / norm;
// estimated direction of gravity and flux (v and w) 估计重力方向和流量/变迁
vx = 2*(q1q3 - q0q2); //四元素中xyz的表示
vy = 2*(q0q1 + q2q3);
vz = q0q0 - q1q1 - q2q2 + q3q3 ;
// error is sum of cross product between reference direction of fields and direction measured by sensors
ex = (ay*vz - az*vy) ; //向量外积在相减得到差分就是误差
ey = (az*vx - ax*vz) ;
ez = (ax*vy - ay*vx) ;
exInt = exInt + ex * Ki; //对误差进行积分
eyInt = eyInt + ey * Ki;
ezInt = ezInt + ez * Ki;
// adjusted gyroscope measurements
gx = gx + Kp*ex + exInt; //将误差PI后补偿到陀螺仪,即补偿零点漂移
gy = gy + Kp*ey + eyInt;
gz = gz + Kp*ez + ezInt; //这里的gz由于没有观测者进行矫正会产生漂移,表现出来的就是积分自增或自减
// integrate quaternion rate and normalise //四元素的微分方程
q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;
q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;
q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;
q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;
// normalise quaternion
norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
q0 = q0 / norm;
q1 = q1 / norm;
q2 = q2 / norm;
q3 = q3 / norm;
Q_ANGLE.Z = GYRO_I.Z;//atan2(2 * q1 * q2 + 2 * q0 * q3, -2 * q2*q2 - 2 * q3* q3 + 1)* 57.3; // yaw
Q_ANGLE.Y = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; // pitch
Q_ANGLE.X = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; // roll
}
*************************************************
下面两个算法为crazyflie使用的算法
变量定义如下:
//#define MADWICK_QUATERNION_IMU
#ifdef MADWICK_QUATERNION_IMU
#define BETA_DEF 0.01f // 2 * proportional gain
#else // MAHONY_QUATERNION_IMU
#define TWO_KP_DEF (2.0f * 0.4f) // 2 * proportional gain
#define TWO_KI_DEF (2.0f * 0.001f) // 2 * integral gain
#endif
#ifdef MADWICK_QUATERNION_IMU
float beta = BETA_DEF; // 2 * proportional gain (Kp)
#else // MAHONY_QUATERNION_IMU
float twoKp = TWO_KP_DEF; // 2 * proportional gain (Kp)
float twoKi = TWO_KI_DEF; // 2 * integral gain (Ki)
float integralFBx = 0.0f;
float integralFBy = 0.0f;
float integralFBz = 0.0f; // integral error terms scaled by Ki
#endif
float q0 = 1.0f;
float q1 = 0.0f;
float q2 = 0.0f;
float q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
*************************************************
2、crazyflie的Madgwick's IMU and AHRS algorithms
*************************************************
// Implementation of Madgwick's IMU and AHRS algorithms.
// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
//
// Date Author Notes
// 29/09/2011 SOH Madgwick Initial release
// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
void sensfusion6UpdateQ(float gx, float gy, float gz, float ax, float ay, float az, float dt)
{
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f)))
{
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0 = 2.0f * q0;
_2q1 = 2.0f * q1;
_2q2 = 2.0f * q2;
_2q3 = 2.0f * q3;
_4q0 = 4.0f * q0;
_4q1 = 4.0f * q1;
_4q2 = 4.0f * q2;
_8q1 = 8.0f * q1;
_8q2 = 8.0f * q2;
q0q0 = q0 * q0;
q1q1 = q1 * q1;
q2q2 = q2 * q2;
q3q3 = q3 * q3;
// Gradient decent algorithm corrective step
s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * dt;
q1 += qDot2 * dt;
q2 += qDot3 * dt;
q3 += qDot4 * dt;
// Normalise quaternion
recipNorm = invSqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
*************************************************
3、crazyflie的Mayhony's AHRS algorithm
*************************************************
// Madgwick's implementation of Mayhony's AHRS algorithm.
// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
//
// Date Author Notes
// 29/09/2011 SOH Madgwick Initial release
// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
void sensfusion6UpdateQ(float gx, float gy, float gz, float ax, float ay, float az, float dt)
{
float recipNorm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
gx = gx * M_PI / 180;
gy = gy * M_PI / 180;
gz = gz * M_PI / 180;
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f)))
{
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity and vector perpendicular to magnetic flux
halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;
// Error is sum of cross product between estimated and measured direction of gravity
halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f)
{
integralFBx += twoKi * halfex * dt; // integral error scaled by Ki
integralFBy += twoKi * halfey * dt;
integralFBz += twoKi * halfez * dt;
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else
{
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * dt); // pre-multiply common factors
gy *= (0.5f * dt);
gz *= (0.5f * dt);
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
*************************************************
匿名的程序在更新四元数的同时更新了姿态角,crazyflie使用单独的函数获得姿态角,同时使用了一个快速求平方根的逆的函数invSqrt.代码如下:
void sensfusion6GetEulerRPY(float* roll, float* pitch, float* yaw)
{
float gx, gy, gz; // estimated gravity direction
gx = 2 * (q1*q3 - q0*q2);
gy = 2 * (q0*q1 + q2*q3);
gz = q0*q0 - q1*q1 - q2*q2 + q3*q3;
*yaw = atan2(2*q1*q2 - 2*q0*q3, 2*q0*q0 + 2*q1*q1 - 1) * 180 / M_PI;
*pitch = atan(gx / sqrt(gy*gy + gz*gz)) * 180 / M_PI;
*roll = atan(gy / sqrt(gx*gx + gz*gz)) * 180 / M_PI;
}
//---------------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float invSqrt(float x)
{
float halfx = 0.5f * x;
float y = x;
long i = *(long*)&y;
i = 0x5f3759df - (i>>1);
y = *(float*)&i;
y = y * (1.5f - (halfx * y * y));
return y;
}
*************************************************
本帖就贴些代码了,下一帖再分析代码。