
RCC->AHBENR|=1<<8; //使能FSMC时钟
RCC->APB2ENR|=1<<3; //使能PORTB时钟
RCC->APB2ENR|=1<<5; //使能PORTD时钟
RCC->APB2ENR|=1<<6; //使能PORTE时钟
RCC->APB2ENR|=1<<7; //使能PORTF时钟
RCC->APB2ENR|=1<<8; //使能PORTG时钟
RCC->APB2ENR|=1<<0; //使能AFIO时钟
GPIOB->CRL&=0XFFFFFFF0;//PB0 推挽输出 背光
GPIOB->CRL|=0X00000003;
//PORTD复用推挽输出
GPIOD->CRH&=0X00FFF000;
GPIOD->CRH|=0XBB000BBB;
GPIOD->CRL&=0XFF00FF00;
GPIOD->CRL|=0X00BB00BB;
//PORTE复用推挽输出
GPIOE->CRH&=0X00000000;
GPIOE->CRH|=0XBBBBBBBB;
GPIOE->CRL&=0X0FFFFFFF;
GPIOE->CRL|=0XB0000000;
//PORTG12复用推挽输出
GPIOG->CRH&=0XFFF0FFFF;
GPIOG->CRH|=0X000B0000;
//A0
GPIOF->CRL&=0XFFFFFFF0;//PF0->RS
GPIOF->CRL|=0X0000000B;
//寄存器清零
//bank1有NE1~4,每一个有一个BCR+TCR,所以总共八个寄存器。
//这里我们使用NE4 ,也就对应BTCR[6],[7]。
FSMC_Bank1->BTCR[6]=0X00000000;
FSMC_Bank1->BTCR[7]=0X00000000;
FSMC_Bank1E->BWTR[6]=0X00000000;
//操作BCR寄存器 使用异步模式
FSMC_Bank1->BTCR[6]|=1<<12;//存储器写使能
FSMC_Bank1->BTCR[6]|=1<<4; //存储器数据宽度为16bit
//操作BTR寄存器
//3个HCLK(HCLK=72M)因为液晶驱动IC的写信号脉宽,最少也得50ns。72M/3=24M=42ns,已经超频了。
FSMC_Bank1->BTCR[7]|=1<<9; //数据保存时间为3个HCLK
//闪存写时序寄存器
FSMC_Bank1E->BWTR[6]=0x0FFFFFFF;//默认值
//使能BANK4(PC卡设备)
FSMC_Bank1->BTCR[6]|=1<<0;
delay_ms(50); // delay 50 ms
LCD_WriteReg(0x0000,0x0001);
delay_ms(50); // delay 50 ms
//因为液晶驱动IC的读数据的时候,速度不能太快,尤其对1289这个IC。
FSMC_Bank1->BTCR[7]|=0XF<<8; //数据保存时间为16个HCLK
DeviceCode = LCD_ReadReg(0x0000);
FSMC_Bank1->BTCR[7]&=~(0XF<<8); //数据保存时间为0
//因为液晶驱动IC的写信号脉宽,最少也得50ns。72M/3=24M=42ns,已经超频了。
FSMC_Bank1->BTCR[7]|=1<<9; //数据保存时间为3个HCLK
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:实验9 TFT液晶FSMC驱动显示实验.rar

tm timer;//时钟结构体
//实时时钟配置
//初始化RTC时钟,同时检测时钟是否工作正常
//BKP->DR1用于保存是否第一次配置的设置
//返回0:正常
//其他:错误代码
u8 RTC_Init(void)
{
//检查是不是第一次配置时钟
u8 temp=0;
if(BKP->DR1!=0X5050)//第一次配置
{
RCC->APB1ENR|=1<<28; //使能电源时钟
RCC->APB1ENR|=1<<27; //使能备份时钟
PWR->CR|=1<<8; //取消备份区写保护
RCC->BDCR|=1<<16; //备份区域软复位
RCC->BDCR&=~(1<<16); //备份区域软复位结束
RCC->BDCR|=1<<0; //开启外部低速振荡器
while((!(RCC->BDCR&0X02))&&temp<250)//等待外部时钟就绪
{
temp++;
delay_ms(10);
};
if(temp>=250)return 1;//初始化时钟失败,晶振有问题
RCC->BDCR|=1<<8; //LSI作为RTC时钟
RCC->BDCR|=1<<15;//RTC时钟使能
while(!(RTC->CRL&(1<<5)));//等待RTC寄存器操作完成
while(!(RTC->CRL&(1<<3)));//等待RTC寄存器同步
RTC->CRH|=0X01; //允许秒中断
while(!(RTC->CRL&(1<<5)));//等待RTC寄存器操作完成
RTC->CRL|=1<<4; //允许配置
RTC->PRLH=0X0000;
RTC->PRLL=32767; //时钟周期设置(有待观察,看是否跑慢了?)理论值:32767
Auto_Time_Set();
//RTC_Set(2009,12,2,10,0,55); //设置时间
RTC->CRL&=~(1<<4); //配置更新
while(!(RTC->CRL&(1<<5))); //等待RTC寄存器操作完成
BKP->DR1=0X5050;
//BKP_Write(1,0X5050);;//在寄存器1标记已经开启了
//printf("FIRST TIME\n");
}else//系统继续计时
{
while(!(RTC->CRL&(1<<3)));//等待RTC寄存器同步
RTC->CRH|=0X01; //允许秒中断
while(!(RTC->CRL&(1<<5)));//等待RTC寄存器操作完成
//printf("OK\n");
}
MY_NVIC_Init(0,0,RTC_IRQChannel,2);//RTC,G2,P2,S2.优先级最低
RTC_Get();//更新时间
return 0; //ok
}
//RTC中断服务函数
//const u8* Week[2][7]=
//{
//{"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"},
//{"日","一","二","三","四","五","六"}
//};
//RTC时钟中断
//每秒触发一次
void RTC_IRQHandler(void)
{
if(RTC->CRL&0x0001)//秒钟中断
{
RTC_Get();//更新时间
//printf("CRL:%d\n",RTC->CRL);
}
if(RTC->CRL&0x0002)//闹钟中断
{
//printf("Alarm!\n");
RTC->CRL&=~(0x0002);//清闹钟中断
//闹钟处理
}
RTC->CRL&=0X0FFA; //清除溢出,秒钟中断标志
while(!(RTC->CRL&(1<<5)));//等待RTC寄存器操作完成
}
//判断是否是闰年函数
//月份 1 2 3 4 5 6 7 8 9 10 11 12
//闰年 31 29 31 30 31 30 31 31 30 31 30 31
//非闰年 31 28 31 30 31 30 31 31 30 31 30 31
//输入:年份
//输出:该年份是不是闰年.1,是.0,不是
u8 Is_Leap_Year(u16 year)
{
if(year%4==0) //必须能被4整除
{
if(year%100==0)
{
if(year%400==0)return 1;//如果以00结尾,还要能被400整除
else return 0;
}else return 1;
}else return 0;
}
//设置时钟
//把输入的时钟转换为秒钟
//以1970年1月1日为基准
//1970~2099年为合法年份
//返回值:0,成功;其他:错误代码.
//月份数据表
u8 const table_week[12]={0,3,3,6,1,4,6,2,5,0,3,5}; //月修正数据表
//平年的月份日期表
const u8 mon_table[12]={31,28,31,30,31,30,31,31,30,31,30,31};
u8 RTC_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
u16 t;
u32 seccount=0;
if(syear<1970||syear>2099)return 1;
for(t=1970;t<syear;t++) //把所有年份的秒钟相加
{
if(Is_Leap_Year(t))seccount+=31622400;//闰年的秒钟数
else seccount+=31536000; //平年的秒钟数
}
smon-=1;
for(t=0;t<smon;t++) //把前面月份的秒钟数相加
{
seccount+=(u32)mon_table[t]*86400;//月份秒钟数相加
if(Is_Leap_Year(syear)&&t==1)seccount+=86400;//闰年2月份增加一天的秒钟数
}
seccount+=(u32)(sday-1)*86400;//把前面日期的秒钟数相加
seccount+=(u32)hour*3600;//小时秒钟数
seccount+=(u32)min*60; //分钟秒钟数
seccount+=sec;//最后的秒钟加上去
//设置时钟
RCC->APB1ENR|=1<<28;//使能电源时钟
RCC->APB1ENR|=1<<27;//使能备份时钟
PWR->CR|=1<<8; //取消备份区写保护
//上面三步是必须的!
RTC->CRL|=1<<4; //允许配置
RTC->CNTL=seccount&0xffff;
RTC->CNTH=seccount>>16;
RTC->CRL&=~(1<<4);//配置更新
while(!(RTC->CRL&(1<<5)));//等待RTC寄存器操作完成
return 0;
}
//得到当前的时间
//返回值:0,成功;其他:错误代码.
u8 RTC_Get(void)
{
static u16 daycnt=0;
u32 timecount=0;
u32 temp=0;
u16 temp1=0;
timecount=RTC->CNTH;//得到计数器中的值(秒钟数)
timecount<<=16;
timecount+=RTC->CNTL;
temp=timecount/86400; //得到天数(秒钟数对应的)
if(daycnt!=temp)//超过一天了
{
daycnt=temp;
temp1=1970; //从1970年开始
while(temp>=365)
{
if(Is_Leap_Year(temp1))//是闰年
{
if(temp>=366)temp-=366;//闰年的秒钟数
else break;
}
else temp-=365; //平年
temp1++;
}
timer.w_year=temp1;//得到年份
temp1=0;
while(temp>=28)//超过了一个月
{
if(Is_Leap_Year(timer.w_year)&&temp1==1)//当年是不是闰年/2月份
{
if(temp>=29)temp-=29;//闰年的秒钟数
else break;
}
else
{
if(temp>=mon_table[temp1])temp-=mon_table[temp1];//平年
else break;
}
temp1++;
}
timer.w_month=temp1+1;//得到月份
timer.w_date=temp+1; //得到日期
}
temp=timecount%86400; //得到秒钟数
timer.hour=temp/3600; //小时
timer.min=(temp%3600)/60; //分钟
timer.sec=(temp%3600)%60; //秒钟
timer.week=RTC_Get_Week(timer.w_year,timer.w_month,timer.w_date);//获取星期
return 0;
}
//获得现在是星期几
//功能描述:输入公历日期得到星期(只允许1901-2099年)
//输入参数:公历年月日
//返回值:星期号
u8 RTC_Get_Week(u16 year,u8 month,u8 day)
{
u16 temp2;
u8 yearH,yearL;
yearH=year/100; yearL=year%100;
// 如果为21世纪,年份数加100
if (yearH>19)yearL+=100;
// 所过闰年数只算1900年之后的
temp2=yearL+yearL/4;
temp2=temp2%7;
temp2=temp2+day+table_week[month-1];
if (yearL%4==0&&month<3)temp2--;
return(temp2%7);
}
//比较两个字符串指定长度的内容是否相等
//参数:s1,s2要比较的两个字符串;len,比较长度
//返回值:1,相等;0,不相等
u8 str_cmpx(u8*s1,u8*s2,u8 len)
{
u8 i;
for(i=0;i<len;i++)if((*s1++)!=*s2++)return 0;
return 1;
}
extern const u8 *COMPILED_DATE;//获得编译日期
extern const u8 *COMPILED_TIME;//获得编译时间
const u8 Month_Tab[12][3]={"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};
//自动设置时间为编译器时间
void Auto_Time_Set(void)
{
u8 temp[3];
u8 i;
u8 mon,date;
u16 year;
u8 sec,min,hour;
for(i=0;i<3;i++)temp[i]=COMPILED_DATE[i];
for(i=0;i<12;i++)if(str_cmpx((u8*)Month_Tab[i],temp,3))break;
mon=i+1;//得到月份
if(COMPILED_DATE[4]==' ')date=COMPILED_DATE[5]-'0';
else date=10*(COMPILED_DATE[4]-'0')+COMPILED_DATE[5]-'0';
year=1000*(COMPILED_DATE[7]-'0')+100*(COMPILED_DATE[8]-'0')+10*(COMPILED_DATE[9]-'0')+COMPILED_DATE[10]-'0';
hour=10*(COMPILED_TIME[0]-'0')+COMPILED_TIME[1]-'0';
min=10*(COMPILED_TIME[3]-'0')+COMPILED_TIME[4]-'0';
sec=10*(COMPILED_TIME[6]-'0')+COMPILED_TIME[7]-'0';
RTC_Set(year,mon,date,hour,min,sec) ;
//printf("%d-%d-%d %d:%d:%d\n",year,mon,date,hour,min,sec);
}
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:
实验10 RTC实时时钟实验.rar

void Sys_Enter_Standby(void)
{
//关闭所有外设(根据实际情况写)
RCC->APB2RSTR|=0X01FC;//复位所有IO口
Sys_Standby();//进入待机模式
}
//检测WKUP脚的信号
//返回值1:连续按下3s以上
// 0:错误的触发
u8 Check_WKUP(void)
{
u8 t=0;
u8 tx=0;//记录松开的次数
LED0=0; //亮灯DS0
while(1)
{
if(WKUP_KD)//已经按下了
{
t++;
tx=0;
}else
{
tx++; //超过300ms内没有WKUP信号
if(tx>3)
{
LED0=1;
return 0;//错误的按键,按下次数不够
}
}
delay_ms(30);
if(t>=100)//按下超过3秒钟
{
LED0=0; //点亮DS0
return 1; //按下3s以上了
}
}
}
//中断,检测到PA0脚的一个上升沿.
//中断线0线上的中断检测
void EXTI0_IRQHandler(void)
{
EXTI->PR=1<<0; //清除LINE10上的中断标志位
if(Check_WKUP())//关机?
{
Sys_Enter_Standby();
}
}
//PA0 WKUP唤醒初始化
void WKUP_Init(void)
{
RCC->APB2ENR|=1<<2; //先使能外设IO PORTA时钟
RCC->APB2ENR|=1<<0; //开启辅助时钟
GPIOA->CRL&=0XFFFFFFF0;//PA0设置成输入
GPIOA->CRL|=0X00000008;
Ex_NVIC_Config(GPIO_A,0,RTIR);//PA0上升沿触发
//(检查是否是正常开)机
if(Check_WKUP()==0)Sys_Standby(); //不是开机,进入待机模式
MY_NVIC_Init(2,2,EXTI0_IRQChannel,2);//抢占2,子优先级2,组2
}
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:实验11 待机唤醒实验.rar

//初始化ADC
//这里我们仅以规则通道为例
//我们默认将开启通道0~3
void Adc_Init(void)
{
//先初始化IO口
RCC->APB2ENR|=1<<2; //使能PORTA口时钟
GPIOA->CRL&=0XFFFF0000;//PA0 1 2 3 anolog输入
//通道10/11设置
RCC->APB2ENR|=1<<9; //ADC1时钟使能
RCC->APB2RSTR|=1<<9; //ADC1复位
RCC->APB2RSTR&=~(1<<9);//复位结束
RCC->CFGR&=~(3<<14); //分频因子清零
//SYSCLK/DIV2=12M ADC时钟设置为12M,ADC最大时钟不能超过14M!
//否则将导致ADC准确度下降!
RCC->CFGR|=2<<14;
ADC1->CR1&=0XF0FFFF; //工作模式清零
ADC1->CR1|=0<<16; //独立工作模式
ADC1->CR1&=~(1<<8); //非扫描模式
ADC1->CR2&=~(1<<1); //单次转换模式
ADC1->CR2&=~(7<<17);
ADC1->CR2|=7<<17; //软件控制转换
ADC1->CR2|=1<<20; //使用用外部触发(SWSTART)!!! 必须使用一个事件来触发
ADC1->CR2&=~(1<<11); //右对齐
ADC1->SQR1&=~(0XF<<20);
ADC1->SQR1&=0<<20; //1个转换在规则序列中 也就是只转换规则序列1
//设置通道0~3的采样时间
ADC1->SMPR2&=0XFFFFF000;//通道0,1,2,3采样时间清空
ADC1->SMPR2|=7<<9; //通道3 239.5周期,提高采样时间可以提高精确度
ADC1->SMPR2|=7<<6; //通道2 239.5周期,提高采样时间可以提高精确度
ADC1->SMPR2|=7<<3; //通道1 239.5周期,提高采样时间可以提高精确度
ADC1->SMPR2|=7<<0; //通道0 239.5周期,提高采样时间可以提高精确度
ADC1->CR2|=1<<0; //开启AD转换器
ADC1->CR2|=1<<3; //使能复位校准
while(ADC1->CR2&1<<3); //等待校准结束
//该位由软件设置并由硬件清除。在校准寄存器被初始化后该位将被清除。
ADC1->CR2|=1<<2; //开启AD校准
while(ADC1->CR2&1<<2); //等待校准结束
//该位由软件设置以开始校准,并在校准结束时由硬件清除
}
//获得ADC值
//ch:通道值 0~3
u16 Get_Adc(u8 ch)
{
//设置转换序列
ADC1->SQR3&=0XFFFFFFE0;//规则序列1 通道ch
ADC1->SQR3|=ch;
ADC1->CR2|=1<<22; //启动规则转换通道
while(!(ADC1->SR&1<<1));//等待转换结束
return ADC1->DR; //返回adc值
}
#define ADC_CH0 0 //通道0
#define ADC_CH1 1 //通道1
#define ADC_CH2 2 //通道2
#define ADC_CH3 3 //通道3
void Adc_Init(void);
u16 Get_Adc(u8 ch);
下载程序后,按下WAIT_UP键,屏幕显示电压有变化。
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:实验12 ADC实验.rar

//取10次,然后平均
u16 Get_Temp(void)
{
u16 temp_val=0;
u8 t;
for(t=0;t<10;t++)
{
temp_val+=Get_Adc(TEMP_CH);
delay_ms(5);
}
return temp_val/10;
}
#define TEMP_CH 16 //温度传感器通道
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:实验13 内部温度传感器实验.rar

//DMA1的各通道配置
//这里的传输形式是固定的,这点要根据不同的情况来修改
//从存储器->外设模式/8位数据宽度/存储器增量模式
//DMA_CHx:DMA通道CHx
//cpar:外设地址
//cmar:存储器地址
//cndtr:数据传输量
void MYDMA_Config(DMA_Channel_TypeDef*DMA_CHx,u32 cpar,u32 cmar,u16 cndtr)
{
u32 DR_Base; //做缓冲用,不知道为什么.非要不可
RCC->AHBENR|=1<<0;//开启DMA1时钟
delay_us(1); //开启DMA1时钟后需等待其稳定(这一步一定要,我之前调试一直不行,就是错在这里)
DR_Base=cpar;
DMA_CHx->CPAR=DR_Base; //DMA1 外设地址
DMA_CHx->CMAR=(u32)cmar; //DMA1,存储器地址
DMA1_MEM_LEN=cndtr; //保存DMA传输数据量
DMA_CHx->CNDTR=cndtr; //DMA1,传输数据量
DMA_CHx->CCR=0X00000000;//复位
DMA_CHx->CCR|=1<<4; //从存储器读
DMA_CHx->CCR|=0<<5; //普通模式
DMA_CHx->CCR|=0<<6; //外设地址非增量模式
DMA_CHx->CCR|=1<<7; //存储器增量模式
DMA_CHx->CCR|=0<<8; //外设数据宽度为8位
DMA_CHx->CCR|=0<<10; //存储器数据宽度8位
DMA_CHx->CCR|=1<<12; //中等优先级
DMA_CHx->CCR|=0<<14; //非存储器到存储器模式
}
//开启一次DMA传输
void MYDMA_Enable(DMA_Channel_TypeDef*DMA_CHx)
{
DMA_CHx->CCR&=~(1<<0); //关闭DMA传输
DMA_CHx->CNDTR=DMA1_MEM_LEN; //DMA1,传输数据量
DMA_CHx->CCR|=1<<0; //开启DMA传输
}
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:实验14 DMA实验.rar
波特率是9600,认识我的都知道我的所有寄存器操作篇的波特率是9600。


myiic.c定义IIC协议:
//初始化IIC
void IIC_Init(void)
{
RCC->APB2ENR|=1<<3;//先使能外设IO PORTB时钟
GPIOB->CRL&=0X00FFFFFF;//PB6/7 推挽输出
GPIOB->CRL|=0X33000000;
GPIOB->ODR|=3<<6; //PB6,7 输出高
}
//产生IIC起始信号
void IIC_Start(void)
{
SDA_OUT(); //sda线输出
IIC_SDA=1;
IIC_SCL=1;
delay_us(4);
IIC_SDA=0;//START:when CLK is high,DATA change form high to low
delay_us(4);
IIC_SCL=0;//钳住I2C总线,准备发送或接收数据
}
//产生IIC停止信号
void IIC_Stop(void)
{
SDA_OUT();//sda线输出
IIC_SCL=0;
IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
delay_us(4);
IIC_SCL=1;
IIC_SDA=1;//发送I2C总线结束信号
delay_us(4);
}
//等待应答信号到来
//返回值:1,接收应答失败
// 0,接收应答成功
u8 IIC_Wait_Ack(void)
{
u8 ucErrTime=0;
SDA_IN(); //SDA设置为输入
IIC_SDA=1;delay_us(1);
IIC_SCL=1;delay_us(1);
while(READ_SDA)
{
ucErrTime++;
if(ucErrTime>250)
{
IIC_Stop();
return 1;
}
}
IIC_SCL=0;//时钟输出0
return 0;
}
//产生ACK应答
void IIC_Ack(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=0;
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//不产生ACK应答
void IIC_NAck(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=1;
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答
void IIC_Send_Byte(u8 txd)
{
u8 t;
SDA_OUT();
IIC_SCL=0;//拉低时钟开始数据传输
for(t=0;t<8;t++)
{
IIC_SDA=(txd&0x80)>>7;
txd<<=1;
delay_us(2); //对TEA5767这三个延时都是必须的
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
delay_us(2);
}
}
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK
u8 IIC_Read_Byte(unsigned char ack)
{
unsigned char i,receive=0;
SDA_IN();//SDA设置为输入
for(i=0;i<8;i++ )
{
IIC_SCL=0;
delay_us(2);
IIC_SCL=1;
receive<<=1;
if(READ_SDA)receive++;
delay_us(1);
}
if (!ack)
IIC_NAck();//发送nACK
else
IIC_Ack(); //发送ACK
return receive;
}
myiic.h:
//IO方向设置
#define SDA_IN() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=0X80000000;}
#define SDA_OUT() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=0X30000000;}
//IO操作函数
#define IIC_SCL PBout(6) //SCL
#define IIC_SDA PBout(7) //SDA
#define READ_SDA PBin(7) //输入SDA
//IIC所有操作函数
void IIC_Init(void); //初始化IIC的IO口
void IIC_Start(void); //发送IIC开始信号
void IIC_Stop(void); //发送IIC停止信号
void IIC_Send_Byte(u8 txd); //IIC发送一个字节
u8 IIC_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 IIC_Wait_Ack(void); //IIC等待ACK信号
void IIC_Ack(void); //IIC发送ACK信号
void IIC_NAck(void); //IIC不发送ACK信号
void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
u8 IIC_Read_One_Byte(u8 daddr,u8 addr);
24Cxx.c定义24C02系列芯片:
//初始化IIC接口
void AT24CXX_Init(void)
{
IIC_Init();
}
//在AT24CXX指定地址读出一个数据
//ReadAddr:开始读数的地址
//返回值 :读到的数据
u8 AT24CXX_ReadOneByte(u16 ReadAddr)
{
u8 temp=0;
IIC_Start();
if(EE_TYPE>AT24C16)
{
IIC_Send_Byte(0XA0); //发送写命令
IIC_Wait_Ack();
IIC_Send_Byte(ReadAddr>>8);//发送高地址
}else IIC_Send_Byte(0XA0+((ReadAddr/256)<<1)); //发送器件地址0XA0,写数据
IIC_Wait_Ack();
IIC_Send_Byte(ReadAddr%256); //发送低地址
IIC_Wait_Ack();
IIC_Start();
IIC_Send_Byte(0XA1); //进入接收模式
IIC_Wait_Ack();
temp=IIC_Read_Byte(0);
IIC_Stop();//产生一个停止条件
return temp;
}
//在AT24CXX指定地址写入一个数据
//WriteAddr :写入数据的目的地址
//DataToWrite:要写入的数据
void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite)
{
IIC_Start();
if(EE_TYPE>AT24C16)
{
IIC_Send_Byte(0XA0); //发送写命令
IIC_Wait_Ack();
IIC_Send_Byte(WriteAddr>>8);//发送高地址
}else IIC_Send_Byte(0XA0+((WriteAddr/256)<<1)); //发送器件地址0XA0,写数据
IIC_Wait_Ack();
IIC_Send_Byte(WriteAddr%256); //发送低地址
IIC_Wait_Ack();
IIC_Send_Byte(DataToWrite); //发送字节
IIC_Wait_Ack();
IIC_Stop();//产生一个停止条件
delay_ms(10);
}
//在AT24CXX里面的指定地址开始写入长度为Len的数据
//该函数用于写入16bit或者32bit的数据.
//WriteAddr :开始写入的地址
//DataToWrite:数据数组首地址
//Len :要写入数据的长度2,4
void AT24CXX_WriteLenByte(u16 WriteAddr,u32 DataToWrite,u8 Len)
{
u8 t;
for(t=0;t<Len;t++)
{
AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);
}
}
//在AT24CXX里面的指定地址开始读出长度为Len的数据
//该函数用于读出16bit或者32bit的数据.
//ReadAddr :开始读出的地址
//返回值 :数据
//Len :要读出数据的长度2,4
u32 AT24CXX_ReadLenByte(u16 ReadAddr,u8 Len)
{
u8 t;
u32 temp=0;
for(t=0;t<Len;t++)
{
temp<<=8;
temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1);
}
return temp;
}
//检查AT24CXX是否正常
//这里用了24XX的最后一个地址(255)来存储标志字.
//如果用其他24C系列,这个地址要修改
//返回1:检测失败
//返回0:检测成功
u8 AT24CXX_Check(void)
{
u8 temp;
temp=AT24CXX_ReadOneByte(255);//避免每次开机都写AT24CXX
if(temp==0X55)return 0;
else//排除第一次初始化的情况
{
AT24CXX_WriteOneByte(255,0X55);
temp=AT24CXX_ReadOneByte(255);
if(temp==0X55)return 0;
}
return 1;
}
//在AT24CXX里面的指定地址开始读出指定个数的数据
//ReadAddr :开始读出的地址 对24c02为0~255
//pBuffer :数据数组首地址
//NumToRead:要读出数据的个数
void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead)
{
while(NumToRead)
{
*pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);
NumToRead--;
}
}
//在AT24CXX里面的指定地址开始写入指定个数的数据
//WriteAddr :开始写入的地址 对24c02为0~255
//pBuffer :数据数组首地址
//NumToWrite:要写入数据的个数
void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite)
{
while(NumToWrite--)
{
AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
WriteAddr++;
pBuffer++;
}
}
24cxx.h定义函数:
#define AT24C01 127
#define AT24C02 255
#define AT24C04 511
#define AT24C08 1023
#define AT24C16 2047
#define AT24C32 4095
#define AT24C64 8191
#define AT24C128 16383
#define AT24C256 32767
//Mini STM32开发板使用的是24c02,所以定义EE_TYPE为AT24C02
#define EE_TYPE AT24C02
u8 AT24CXX_ReadOneByte(u16 ReadAddr); //指定地址读取一个字节
void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite); //指定地址写入一个字节
void AT24CXX_WriteLenByte(u16 WriteAddr,u32 DataToWrite,u8 Len);//指定地址开始写入指定长度的数据
u32 AT24CXX_ReadLenByte(u16 ReadAddr,u8 Len); //指定地址开始读取指定长度数据
void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite); //从指定地址开始写入指定长度的数据
void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead); //从指定地址开始读出指定长度的数据
u8 AT24CXX_Check(void); //检查器件
void AT24CXX_Init(void); //初始化IIC
详情请登录网友——正点原子官方论坛http://www.openedv.com/forums/list.htm或下载《STM32不完全手册V2.0》
源代码:实验15 IIC实验.rar
KEY0=USER BUTTON ;
KEY1=Anti_tamper;
KEY2=WAKEup;
回复
有奖活动 | |
---|---|
发原创文章 【每月瓜分千元赏金 凭实力攒钱买好礼~】 | |
【EEPW在线】E起听工程师的声音! | |
“我踩过的那些坑”主题活动——第001期 | |
高校联络员开始招募啦!有惊喜!! | |
【工程师专属福利】每天30秒,积分轻松拿!EEPW宠粉打卡计划启动! | |
送您一块开发板,2025年“我要开发板活动”又开始了! | |
打赏了!打赏了!打赏了! |
打赏帖 | |
---|---|
【我踩过的那些坑】工作那些年踩过的记忆深刻的坑被打赏10分 | |
【我踩过的那些坑】DRC使用位置错误导致的问题被打赏100分 | |
我踩过的那些坑之混合OTL功放与落地音箱被打赏50分 | |
汽车电子中巡航控制系统的使用被打赏10分 | |
【我踩过的那些坑】工作那些年踩过的记忆深刻的坑被打赏100分 | |
分享汽车电子中巡航控制系统知识被打赏10分 | |
分享安全气囊系统的检修注意事项被打赏10分 | |
分享电子控制安全气囊计算机知识点被打赏10分 | |
【分享开发笔记,赚取电动螺丝刀】【OZONE】使用方法总结被打赏20分 | |
【分享开发笔记,赚取电动螺丝刀】【S32K314】芯片启动流程分析被打赏40分 |