共1条
1/1 1 跳转至页
The HALL Effect
※The HALL Effect(霍尔效应)
※The HALL Effect Latch(双极锁存型霍尔IC)
※The HALL Effect Switch(单极开关型霍尔IC)
※The Omnipolar ® Hall Effect Switch(双霍尔IC)
※The Magnetic Geartooth Sensing(齿轮传感器)
※The Hall Effect Virtual Demoboard(霍尔IC功能演示板)
The Hall effect principle is named for physicist Edwin Hall. In 1879 he discovered that when a conductor or semiconductor with current flowing in one direction was introduced perpendicular to a magnetic field a voltage could be measured at right angles to the current path. The Hall voltage can be calculated from:
VHall = Bsens where:
VHall = emf in volts
B = applied field in Gauss
sens = sensitivity in Volts/Gauss
I = bias current
The initial use of this discovery was for the classification of chemical samples. The development of indium arsenide semiconductor compounds in the 1950's led to the first useful Hall effect magnetic instruments. Hall effect sensors allowed the measurement of DC or static magnetic fields with requiring motion of the sensor. In the 1960's the popularization of silicon semiconductors led to the first combinations of Hall elements and integrated amplifiers. This resulted in the now classic digital output Hall switch.
The continuing evolution of Hall transducers technology saw a progression from single element devices to dual orthogonally arranged elements. This was done to minimize offsets at the Hall voltage terminals.
The next progression brought on the quadratic of 4 element transducers. These used 4 elements orthogonally arranged in a bridge configuration. All of these silicon sensors were built from bipolar junction semiconductor processes.
A switch to CMOS processes allowed the implementation of chopper stabilization to the amplifier portion of the circuit. This helped reduce errors by reducing the input offset errors at the op amp. All errors in the circuit non chopper stabilized circuit result in errors of switch point for the digital or offset and gain errors in the linear output sensors.
The current generation of CMOS Hall sensors also include, a scheme that actively switched the direction of current through the Hall elements. This scheme eliminates the offset errors typical of semiconductor Hall elements. It also actively compensates for temperature and strain induced offset errors. The overall effect of active plate switching and chopper stabilization yields Hall effect sensors with an order of magnitude improvement in drift of switch points or gain and offset errors.
Melexis uses the CMOS process exclusively, for best performance and smallest chip size. The developments to Hall effect sensor technology can be credited mostly to the integration of sophisticated signal conditioning circuits to the Hall IC.
Melexis introduced the world's first programmable linear Hall IC, which offered a glimpse of future technology. Future sensors will be programmable and have integrated microcontroller cores to make an even "smarter" sensor.
关键词: Effect
共1条
1/1 1 跳转至页
回复
| 有奖活动 | |
|---|---|
| 2026年“我要开发板活动”第三季,开始了! | |
| 硬核工程师专属补给计划——填盲盒 | |
| “我踩过的那些坑”主题活动——第002期 | |
| 【EEPW电子工程师创研计划】技术变现通道已开启~ | |
| 发原创文章 【每月瓜分千元赏金 凭实力攒钱买好礼~】 | |
| 【EEPW在线】E起听工程师的声音! | |
| 高校联络员开始招募啦!有惊喜!! | |
| 【工程师专属福利】每天30秒,积分轻松拿!EEPW宠粉打卡计划启动! | |
我要赚赏金打赏帖 |
|
|---|---|
| PTC与NTC功能常规对比被打赏¥14元 | |
| 【分享开发笔记,赚取电动螺丝刀】关于3pin锂电池接口的介绍/使用被打赏¥16元 | |
| 以启明云端ESP32P4开发板实现TF卡读写功能被打赏¥28元 | |
| 【分享开发笔记,赚取电动螺丝刀】树莓派5串口UART0配置被打赏¥25元 | |
| 【STM32F103ZET6】17:分享在Rtos项目中断管理的使用经验被打赏¥23元 | |
| 【STM32F103ZET6】16:分享在中断中恢复串口任务,遇到的问题被打赏¥31元 | |
| 在FireBeetle2ESP32-C5上实现温度大气压检测及显示被打赏¥21元 | |
| 【分享开发笔记,赚取电动螺丝刀】SAME51双串口收发配置被打赏¥27元 | |
| Chaos-nano操作系统在手持式VOC检测设备上的应用被打赏¥37元 | |
| 【分享开发笔记,赚取电动螺丝刀】关于在导入第三方库lib时,wchart类型冲突的原因及解决方案被打赏¥30元 | |
我要赚赏金
