共1条
1/1 1 跳转至页
Rfid阅读距离
只看楼主 1楼
Performance of any wireless system depends on several antenna characteristics and propagation channel properties which include:
1. Antennas:
l Operating frequency band;
l Gain characteristics (maximum gain, radiation pattern, beam-width);
l Matching (VSWR or return loss);
l Polarization (axial ratio);
l Sensitivity to nearby objects with different properties.
2. Propagation channel:
l Path loss;
l Spatial and temporal fading statistics (Ricean/ Rayleigh parameters, delay spread, coherence bandwidth).
The power chip absorbed by the RFID tag chip can be expressed as:
is the output power of the reader,
is the impedance matching coefficient between the reader and its antenna,
is the coupling coefficient (the power transmission loss) between the two arbitrarily oriented reader and tag antennas,
is the impedance matching coefficient between the tag chip and its antenna
(能量传输系数)
is the reader output impedance (typically 50 Ohm),
is the transmitting antenna impedance,
is the tag antenna impedance,
is the chip impedance
Main factors which affect coupling Coefficient are:
l Reader and tag antenna geometries;
l Relative position of antennas (distance and orientation);
l Environment, including any objects near antennas
The signal strength at the tag location can be obtained from the transmitted EIRP and path loss as:
is the output power of the RFID reader transmitter and t is the gain of the reader antenna ( is the transmitted EIRP).
Passive UHF RFID tag can be viewed as an RF source emitting a modulated signal with differential EIRP:
S is the power density of an EM wave incident on the RFID tag.
E is the electric field of an incoming wave
The power of the modulated tag signal received by the mono-static reader antenna in an arbitrary propagation environment can be written in terms of differential EIRP as:
In free space, equation can be rewritten in the form of a classical radar equation:
The power collected by a perfectly matched antenna load (chip) can be expressed either via incident power and tag antenna gain or via incident power density and effective tag antenna area:
The effective area of an RFID tag antenna is:
Tag power sensitivity can also be readily expressed as:
is the chip power threshold sensitivity
Tag range can be expressed as:
Tag power sensitivity and maximum tag range for any given EIRP can be calculated from the measured minimum power using the following equations:
Friis传输方程:
为在最大辐射方向相距为r处产生的功率密度
自由空间传输损失L的定义为:
接收天线增益(被天线上的损耗减弱了的方向性)
弗里斯传输公式:
1. 随着天线尺寸的减小,输入阻抗快速下降。
2. 即使天线与IC阻抗匹配,天线的低有效率严重影响标签的阅读距离。
3. 天线附近的电介质降低天线的性能,并使天线的谐振频率偏移。
4. 随着天线尺寸的减小,阅读距离快速减小,这是因为天线的辐射效率减小。
5. 基质损耗越大,天线效率越差。
6. 基质 越薄,天线效率越好。
7. 金属线的电导率越小,辐射效率越差,这是因为低电导率增加导电损耗。
8. 当厚度低于趋肤深度时,厚度越薄,辐射效率越差,这是因为导电损耗增加的缘故。
9. 随着目标物的介电常数和损耗的增大,效率减小。
10. 芯片的阻抗不仅与频率有关,而且与功率有关。与功率有关,是因为芯片内部有储能器件。芯片的电抗是很强的容抗,大约为-100到-400欧姆,然而电阻为十几到几十欧姆。
11. T匹配网络作为阻抗变换器。在半波偶极子天线的情况下,T匹配网络的端口的输入阻抗是感性的。然而对于较短的偶极子天线,总的输入阻抗可以是容性的或者感性的。
12. 电流方向相反的部分对辐射的贡献很小,反而增加了损耗。
13. 辐射源主要是垂直于地平面的导体(IFA);平行于地平面的导体产生一个传输线电流模式,造成功率损耗,其辐射可以忽略。所以,这种几何形状的天线很难具有高的辐射效率。通过用带状平面代替线状导体,可以改善天线的带宽。
14. 设计工程师在研发天线时的阻抗测量是重要的。原因是:(1)RFID天线的负载必须设计为具有最大的功率传输系数。否则,标签不能被激活;(2)在通信链路中,RFID标签的背散射功率的效率要大。在调制背散射通信机制中,信息通过开路或者短路(相对于标签天线的输入阻抗)负载来编码。但是,如果标签天线的阻抗太低,将无法短路天线的负载。
15. RFID芯片(作为RFID天线的负载)是非线性负载,芯片在各个状态的复(数)阻抗随着频率和输入功率的变化而改变。芯片的内部电路需要某一最小的电压或功率来激活。这个阈值(激活芯片的最小电压或功率)和(芯片)阻抗与输入功率的变化关系由芯片的RF前端和芯片的消耗功率决定。(芯片)阻抗与频率的变化关系主要由芯片的寄生和封装效果决定。
16. 天线的典型值为:圆极化天线:0-2dBi;线极化天线:大约6dBi。增益影响识别距离:较高增益的标签天线也有较长的阅读距离。
17. 对于天线尺寸与工作波长相差不多时(在UHF RFID中使用的天线),远场和近场的边界通常定义为r = 2D2 /λ,D是天线的最大尺寸,λ是工作波长。对于(电)小尺寸天线(在LF/HF RFID中使用的天线),近场中的辐射场域是小的,远场和近场的边界通常定义为r = λ / 2π .
18. 三角形的偶极子天线结构可以提供必要的天线增益和带宽。阻抗的实部和虚部可能会有较大的改变。
19.
关键词: 阅读 距离 功率 天线 阻抗 芯片
共1条
1/1 1 跳转至页
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |