在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与先前状态无关的逻辑电路称为组合逻辑电路。下图即是组合逻辑电路的一般框图,它可用如下的逻辑函数来描述,即 Li=f(A1,A2,…,An) (i=1,2,…,m)
式中 A1,A2,…,An为输入变量。
组合逻辑电路具有如下特点:
(1)输出、输入之间没有反馈延迟通路;
(2)电路中不含记忆单元。
第一节 逻辑代数
逻辑代数亦称为布尔代数,其基本思想是英国数学家布尔于1854年提出的。1938年,香农把逻辑代数用于开关和继电器网络的分析、化简,率先将逻辑代数用于解决实际问题。经过几十年的发展,逻辑代数已成为分析和设计逻辑电路不可缺少的数学工具。
逻辑代数提供了一种方法,即使用二值函数进行逻辑运算,这样
,一些用语言描述显得十分复杂的逻辑命题,使用数学语言后,就变成了简单的代数式。逻辑电路中的一个逻辑命题,不仅包含肯定和否定两重含义,而且包含条件与结果许多种可能的组合。比如,一个3输入端的与非门存在着输入与输出状态的八种可能的组合。用语言描述既噜嗦又不清晰,用真值表则一目了然,而用代数式L=ABC表达就更为简明。
逻辑代数有一系列的定律和规则,用它们对数学表达式进行处理
,可以完成对电路的化简、变换、分析和设计。
一、逻辑代数的基本定律和恒等式
常用逻辑代数定律和恒等式表:
表中的基本定律是根据逻辑加、乘、非三种基本运算法则,推导出的逻辑运算的一些基本定律。
对于表中所列的定律的证明,最有效的方法就是检验等式左边的函数与右边函数的真值表是否吻合。
例如,要证明A+A=A时,可按照下面的步骤进行证明:
1. 令A=1,则A+A=l+l=l=A;
2. 令A=0,则A+A=0+0=0=A;
除此之外,别无其他可能,可见A+A=A。
恒等式可以用其他更基本的定律加以证明,我们来证明其中的第一条,即
证明如下:
在以上所有定律中,反演律具有特殊重要的意义。反演律又称为摩根定律,它经常用于求一个函数的非函数或者对逻辑函数进行变换
。
例1:证明反演律(摩根定律)成立
证明:
因为“输入都是1时,输出才是1”同“输入有0时,输出为0”在逻辑上是等效的,这种等效关系可写成
本节所列出的基本公式反映了逻辑关系,而不是数量之间的关系
,在运算中不能简单套用初等代数的运算规则。如初等代数中的移项规则就不能用,这是因为逻辑代数中没有减法和除法的缘故。这一点在使用时必须注意。
二、逻辑代数的基本规则
1.代入规则
在任何一个逻辑等式中,如果将等式两边出现的某变量A ,都用一个函数代替,则等式依然成立,这个规则称为代人规则。
例如 ,在B(A+C)=BA+BC中 ,将所有出现A的地方都代以函数A+D,则等式仍成立,即得B[(A+D)+C]=B(A+D)+BC=BA+BD+BC
代人规则可以扩展所有基本定律的应用范围。
2.反演规则
根据摩根定律,求一个逻辑函数L的非函数时,可以将L中的与(·)换成或(+),或(+)换成与(·);再将原变量换为非变量(如A换成),非变量换为原变量;并将1换成0,0换成1;那么所得逻辑函数式就是。这个规则称为反演规则。
注意,交换时要保持原式中的先后顺序,否则容易出错。
例如,求的非函数时,按照上述法则 ,可得,不能写成。
运用反演规则时必须注意两点:
(1)保持原来的运算优先顺序,即如果在原函数表达式中,AB之间先运算,再和其他变量进行运算,那么非函数的表达式中,仍然是AB之间先运算。
(2)对于反变量以外的非号应保留不变。
3.对偶规则
L是一个逻辑表达式,如把L中的与(·)换成或(+),或(+)换成与(·);1换成0,0换成1,那么就得到一个新的逻辑函数式,这就是L的对偶式,记作L。
例如,,则。变换时仍需注意保持原式中先与后或的顺序。
所谓对偶规则,是指当某个逻辑恒等式成立时,则其对偶式也成立。
利用对偶规则,可从已知公式中得到更多的运算公式。
例如,吸收律成立,则它的对偶式也是成立的。
三、逻辑函数的代数变换与化简法
在第1章,曾经通过列写真值表,得到了楼梯照明灯控制的逻辑表达式,它是一个同或函数。那么 ,对应唯一的真值表,逻辑函数表达式和实现它的逻辑电路是不是唯一的呢?下面就讨论这个问题。
1.逻辑函数的变换
例:函数对应的逻辑图如下图所示。利用逻辑代数的基本定律对上述表达式进行变换。
解:
结果表明,图示电路也是一个同或门。
例:求同或函数的非函数。
解:
这个函数称为异或函数,它表示当两个输入变量取值相异(一个为0,另一个为1)时,输出函数值为1。
在MOS门电路中 ,我们已接触过异或门,上面的推导更明确地告诉我们,异或门和同或门互为非函数。所以在异或门电路的输出端再加一级反相器,也能得到同或门,如下图所示。
至此,我们已经学到了不止一种同或函数,但是同或函数的真值表却是唯一的,事实上还可以列举许多。由此可以得出结论:一个特定的逻辑问题,对应的真值表是唯一的,但实现它的电路多种多样。这给设计电路带来了方便,当我们手头缺少某种逻辑门的器件时,可以通过函数表达式的变换,避免使用这种器件而改用其他器件。这种情形在实际工作中常会遇到。
2.逻辑函数的化简
根据逻辑表达式,可以画出相应的逻辑图。但是直接根据某种逻辑要求而归纳出来的逻辑表达式及其对应的逻辑图,往往并不是最简的形式,这就需要对逻辑表达式进行化简。
一个逻辑函数可以有多种不同的逻辑表达式,如与—或表达式、或—与表达式、与非—与非表达式、或非—或非表达式以及与—或—非表达式等。
以上五个式子是同一函数不同形式的最简表达式。以下将着重讨论与或表达式的化简,因为与或表达式易于从真值表直接写出,且只需运用一次摩根定律就可以从最简与或表达式变换为与非一与非表达式,从而可以用与非门电路来实现。
最简与或表达式有以下两个特点:
①与项(即乘积项)的个数最少。
②每个乘积项中变量的个数最少。
代数法化简逻辑函数是运用逻辑代数的基本定律和恒等式进行化简,常用下列方法:
① 并项法
② 吸收法
③ 消去法
④ 配项法
使用配项的方法要有一定的经验,否则越配越繁。通常对逻辑表达式进行化简,要综合使用上述技巧。以下再举几例。
例1
解:
例2