这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 企业专区 » OpenVINO生态社区 » 【原创】项目实战—全景图像拼接(十六)

共4条 1/1 1 跳转至

【原创】项目实战—全景图像拼接(十六)

高工
2020-09-06 21:24:56     打赏

项目实战—全景图像拼接

图像拼接是计算机视觉中最成功的应用之一。如今,很难找到不包含此功能的手机或图像处理API。在本次教程中,我们将讨论如何使用PythonOpenCV进行图像拼接。也就是,给定两张共享某些公共区域的图像,目标是缝合它们并创建一个全景图像场景。当然也可以是给定多张图像,但是总会转换成两张共享某些公共区域图像拼接的问题,因此我们将以最简单的形式进行介绍。

我们在之前已经讲过OpenCV的特征点的问题,今天我们将使用这些知识来完成图像的全景拼接。

我们需要拼接的两张图像如下:

image.png

给定上述一对图像,我们希望将它们缝合以创建全景场景。重要的是要注意,两个图像都需要有一些公共区域。当然,我们上面给出的两张图像时比较理想的,有时候两个图像虽然具有公共区域,但是同样还可能存在缩放、旋转、来自不同相机等因素的影响。但是无论哪种情况,我们都需要检测图像中的特征点。

关键点检测

最初的方法是使用诸如Harris Corners之类的算法来提取关键点。然后,我们可以尝试基于某种相似性度量(例如欧几里得距离)来匹配相应的关键点。众所周知,其有不错的特性:角点不变。这意味着,一旦检测到角点,即使旋转图像,该角点仍将存在。

但是,如果我们旋转然后缩放图像怎么办?在这种情况下,我们会很困难,因为角点的大小不变。也就是说,如果我们放大图像,先前检测到的角可能会变成一条线!

总而言之,我们需要旋转和缩放不变的特征。那就是更强大的方法(如SIFTSURFORB)。

诸如SIFTSURF之类的方法试图解决角点检测算法的局限性。通常,角点检测器算法使用固定大小的内核来检测图像上的感兴趣区域(角)。不难看出,当我们缩放图像时,该内核可能变得太小或太大。为了解决此限制,诸如SIFT之类的方法使用高斯差分(DoD)。想法是将DoD应用于同一图像的不同缩放版本。它还使用相邻像素信息来查找和完善关键点和相应的描述符。

首先,我们需要加载2个图像,一个查询图像和一个训练图像。最初,我们首先从两者中提取关键点和描述符。通过使用OpenCV detectAndCompute()函数,我们可以一步完成它。请注意,为了使用detectAndCompute(),我们需要一个关键点检测器和描述符对象的实例。它可以是ORBSIFTSURF等。此外,在将图像输入给detectAndCompute()之前,我们将其转换为灰度。

由于本次的项目并不难,我们先来看所有的代码,

import numpy as np
import cv2

class Stitcher:

    #拼接函数
    def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False):
        #获取输入图片
        (imageB, imageA) = images
        #检测A、B图片的SIFT关键特征点,并计算特征描述子
        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)

        # 匹配两张图片的所有特征点,返回匹配结果
        M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)

        # 如果返回结果为空,没有匹配成功的特征点,退出算法
        if M is None:
            return None

        # 否则,提取匹配结果
        # H是3x3视角变换矩阵      
        (matches, H, status) = M
        # 将图片A进行视角变换,result是变换后图片
        result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
        self.cv_show('result', result)
        # 将图片B传入result图片最左端
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
        self.cv_show('result', result)
        # 检测是否需要显示图片匹配
        if showMatches:
            # 生成匹配图片
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
            # 返回结果
            return (result, vis)

        # 返回匹配结果
        return result
    def cv_show(self,name,img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    def detectAndDescribe(self, image):
        # 将彩色图片转换成灰度图
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # 建立SIFT生成器
        descriptor = cv2.xfeatures2d.SIFT_create()
        # 检测SIFT特征点,并计算描述子
        (kps, features) = descriptor.detectAndCompute(image, None)

        # 将结果转换成NumPy数组
        kps = np.float32([kp.pt for kp in kps])

        # 返回特征点集,及对应的描述特征
        return (kps, features)

    def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
        # 建立暴力匹配器
        matcher = cv2.BFMatcher()
  
        # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)

        matches = []
        for m in rawMatches:
            # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
            # 存储两个点在featuresA, featuresB中的索引值
                matches.append((m[0].trainIdx, m[0].queryIdx))

        # 当筛选后的匹配对大于4时,计算视角变换矩阵
        if len(matches) > 4:
            # 获取匹配对的点坐标
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])

            # 计算视角变换矩阵
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)

            # 返回结果
            return (matches, H, status)

        # 如果匹配对小于4时,返回None
        return None

    def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # 初始化可视化图片,将A、B图左右连接到一起
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB

        # 联合遍历,画出匹配对
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # 当点对匹配成功时,画到可视化图上
            if s == 1:
                # 画出匹配对
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)

        # 返回可视化结果
        return vis
imageA = cv2.imread("left_01.png")
imageB = cv2.imread("right_01.png")

# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)

# 显示所有图片
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

先看特征点的匹配结果:

image.png

在匹配之后,可以对图像进行处理:

image.png

这样看着很别扭,接下来是对其进行合并,并进行Transfrom变换:

image.png

可以看到,全景图像已经拼接完成了。效果还是非常不错的,大家可以尝试使用其他的特征算法来进行试验。

 

 

 

 

 

 

 

 


对计算机视觉感兴趣?这个社区推荐给你~

>>点击了解OpenVINO生态开发社区



助工
2020-09-08 23:14:34     打赏
2楼

感谢您的分享


工程师
2020-09-09 07:36:35     打赏
3楼

挺难操作的看起来


高工
2020-09-21 23:26:24     打赏
4楼

感谢分享


共4条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]