这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 综合技术 » 通讯及无线技术 » 电阻电桥基础

共2条 1/1 1 跳转至

电阻电桥基础

高工
2007-07-31 10:09:47     打赏

摘要:电桥是用来精密测量电阻或其他模拟量的一种非常有效的方法。本文继第一部分之后,介绍了如何实现具有较大信号输出的硅应变计与模数转换器(ADC)的接口。特别是Σ-Δ ADC,当使用硅应变计时,它是一种实现压力变送器的低成本方案。
概述本文第一部分,应用笔记3426主要论述了为什么要使用电阻电桥,电桥的基本配置,以及一些具有小信号输出的电桥,例如粘贴丝式或金属箔应变计。本篇应用笔记则侧重于高输出的硅应变计。本篇应用笔记作为第二部分,重点介绍高输出的硅应变计,以及它与高分辨率Σ-Δ模数转换器良好的适配性。举例说明了如何为给定的非补偿传感器计算所需ADC的分辨率和动态范围。本文演示了在构建一个简单的比例电路时,如何确定ADC和硅应变计的特性,并给出了一个采用电流驱动传感器的简化应用电路。 硅应变计的背景知识硅应变计的优点在于高灵敏度。硅材料中的应力引起体电阻的变化。相比那些仅靠电阻的尺寸变化引起电阻变化的金属箔或粘贴丝式应变计,其输出通常要大一个数量级。这种硅应变计的输出信号大,可以与较廉价的电子器件配套使用。但是,这些小而脆的器件的安装和连线非常困难,并增加了成本,因而限制了它们在粘贴式应变计应用中的使用。然而,硅应变计却是MEMS (微机电结构)应用的最佳选择。利用MEMS,可将机械结构建立在硅片上,多个应变计可以作为机械构造的一部分一起制造。因此,MEMS工艺为整个设计问题提供了一个强大的、低成本的解决方案,而不需要单独处理每个应变计。 MEMS器件最常见的一个实例是硅压力传感器,它是从上个世纪七十年代开始流行的。这些压力传感器采用标准的半导体工艺和特殊的蚀刻技术制作而成。采用这种特殊的蚀刻技术,从晶圆片的背面选择性地除去一部分硅,从而生成由坚固的硅边框包围的、数以百计的方形薄片。而在晶片的正面,每一个小薄片的每个边上都制作了一个压敏电阻。用金属线把每个小薄片周边的四个电阻连接起来就形成一个全桥工作的惠斯登电桥。然后使用钻锯从晶片上锯下各个传感器。这时,传感器功能就完全具备了,但还需要配备压力端口和连接引线方可使用。这些小传感器便宜而且相对可靠。但也存在缺点。这些传感器受温度变化影响较大,而且初始偏移和灵敏度的偏差很大。 压力传感器实例在此用一个压力传感器来举例说明。但所涉及的原理适用于任何使用相似类型的电桥作为传感器的系统。式1给出了一个原始的压力传感器的输出模型。式1中变量的幅值及其范围使VOUT在给定压力(P)下具有很宽的变化范围。不同传感器在同一温度下,或者同一传感器在不同温度下,其VOUT都有所不同。要提供一个一致的、有意义的输出,每个传感器都必须进行校正,以补偿器件之间的差异和温度漂移。长期以来都是使用模拟电路进行校准的。然而,现代电子学使得数字校准比模拟校准更具成本效益,而且数字校准的准确性也更好。利用一些模拟“窍门”,可以在不牺牲精度的前提下简化数字校准。 式1: VOUT = VB x (P x S0 x (1 + S1 x (T - T0)) + U0 + U1 x (T - T0)) 式中,VOUT为电桥输出,VB是电桥的激励电压,P是所加的压力,T0是参考温度,S0是T0温度下的灵敏度,S1是灵敏度的温度系数(TCS),U0是在无压力时电桥在温度T0输出的偏移量(或失衡),而U1则是偏移量的温度系数(OTC)。 式1使用一次多项式来对传感器进行建模。有些应用场合可能会用到高次多项式、分段线性技术、或者分段二次逼近模型,并为其中的系数建立一个查寻表。无论使用哪种模型,数字校准时都要对VOUT、VB、和T进行数字化,同时要采用某种方式来确定全部系数,并进行必要的计算。式2由式1整理并解出P。从式2可以更清楚地看到,为了得到精确的压力值,数字计算(通常由微控制器(µC)执行)所需的信息。 式2: P = (VOUT / VB - U0 - U1 x (T-T0)) / (S0 x (1 + S1 x (T-T0)) 电压驱动图1电路中的电压驱动方式使用一个高精度ADC来对VOUT (AIN1/AIN2)、温度(AIN3/AIN4)和VB (AIN5/AIN6)进行数字化。这些测量值随后被传送到µC,在那里计算实际的压力。电桥直接由电源驱动,这个电源同时也为ADC、电压基准和µC供电。电路图中标有Rt的电阻式温度检测器用来测量温度。通过ADC内的输入复用器同时测量电桥、RTD和电源电压。为确定校准系数,整个系统(或至少是RTD和电桥)被放到温箱里,向电桥施加校准过的压力,并在多个不同温度下进行测量。测量数据通过测试系统进行处理,以确定校准系数。最终的系数被下载到µC并存储到非易失性存储器中。
图1. 该电路直接测量计算实际压力所需的变量(激励电压、温度和电桥输出) 设计该电路时主要应考虑的是动态范围和ADC的分辨率。最低要求取决于具体应用和所选的传感器和RTD的参数。为了举例说明,使用下列参数:系统规格
满量程压力:100psi
压力分辨率:0.05psi
温度范围:-40°C到+85°C
电源电压:4.75到5.25V
压力传感器规格
S0 (灵敏度): 150到300µV/V/psi
S1 (灵敏度的温度系数): 最大-2500ppm/°C
U0 (偏移): -3到+3mV/V
U1 (偏移的温度系数): -15到+15µV/V/°C
RB (输入电阻): 4.5k
TCR (电阻温度系数): 1200ppm/°C
RTD: PT100
α: 3850ppm/°C ( R/°C = 0.385, 额定值)
-40°C时的值: 84.27
0°C时值: 100
85°C时值: 132.80
关于PT100的更多细节,请参见Maxim的应用笔记AN3450, Positive Analog Feedback Compensates PT100 Transducer。
电压分辨率
能够接受的最小电压分辨率可根据能够检测到的最小压力变化所对应的VOUT得到。极端情况为使用最低灵敏度的传感器,在最高温度和最低供电电压下进行测量。注意,式1中的偏移项不影响分辨率,因为分辨率仅与压力响应有关。 使用式1以及上述假设: VOUT min = 4.75V (0.05psi/count 150µV/V/psi x (1+ (-2500ppm/°C) x (85°C -25°C)) 30.3µV/count 所以: 最低ADC分辨率 = 30µV/count 输入范围
输入范围取决于最大输入电压和最小或者最负的输入电压。根据式1,产生最大VOUT的条件是:最大压力(100psi)、最低温度(-40°C)、最大电源电压(5.25V)和3mV/V的偏移、-15µV/V/°C的偏移温度系数、-2500ppm/°C的TCS、以及最高灵敏度的芯片(300µV/V/psi)。最负信号一般都在无压力(P=0)、电源电压为5.25V、-3mV/V的偏移、-40°C的温度以及OTC等于+15µV/V/°C的情况下出现。 再次使用公式1以及上述假设: VOUT max = 5.25V x (100psi ・ 300µV/V/psi x (1+ (-2500ppm/°C) x (-40°C - 25°C)) + 3mV/V + (-0.015mV/V/°C) x (-40°C - 25°C)) - 204mV VOUT min = 5.25 x (-3mV/V + (0.015mV/V/°C x (-40°C - 25°C))) - -21mV. 因此:ADC的输入范围 = -21mV到+204mV 分辨位数
适用于本应用的ADC应具有-21mV到+204mV 的输入范围和30µV/count的电压分辨率。该ADC的编码总数为(204mV + 21mV) / (30µV/count) = 7500 counts,或稍低于13位的动态范围。如果传感器的输出范围与ADC的输入范围完全匹配,那么一个13位的转换器就可以满足需要。由于-21mV到+204mV的量程与通常的ADC输入范围都不匹配,因此需要或者对输入信号进行电平移动和放大,或者选用更高分辨率的ADC。幸运的是,现代的Σ-Δ转换器的分辨率高,具有双极性输入和内部放大器,使高分辨率ADC的使用变为现实。这些Σ-Δ ADC提供了一个更为经济的方案,而不需要增加其它元器件。这不仅减小了电路板尺寸,还避免了放大和电平移位电路所引入的漂移误差。 工作于5V电源的典型Σ-Δ转换器,采用2.5V参考电压,具有±2.5V的输入电压范围。为了满足我们对于压力传感器分辨率的要求,这种ADC的动态范围应当是:(2.5V - (- 2.5V)) / (30µV/count) = 166,667 counts。这相当于17.35位,很多ADC都能满足该要求,例如18位的MAX1400。如果选用SAR ADC,则是相当昂贵的,因为这是将18位转换器用于13位应用,且只产生11位的结果。然而,选用18位(17位加上符号位)的Σ-Δ转换器更为现实,尽管三个最高位其实并没有使用。除了廉价外,Σ-Δ转换器还具有高输入阻抗和很好的噪声抑制特性。 18位ADC可以使用带内部放大器的更低分辨率的转换器来代替,例如16位的MAX1416。8倍的增益相当于将ADC转换结果向高位移了3位。从而利用了全部的转换位并将转换需求减少到15位。是选用无增益的高分辨率转换器,还是有增益的低分辨率转换器,这要看在具体使用的增益和转换速率下的噪声规格。Σ-Δ转换器的有效分辨率通常受到噪声的限制。 温度测量
如果测量温度仅仅是为了对压力传感器进行补偿,那么,温度测量不要求十分准确,只要测量结果与温度的对应关系具有足够的可重复性即可。这样将会有更大的灵活性和较松的设计要求。有三个基本的设计要求:避免自加热、具有足够的温度分辨率、保证在ADC的测量范围之内。 使最大Vt电压接近于最大压力信号有利于采用相同的ADC和内部增益来测量温度和压力。本例中的最大输入电压为+204mV。考虑到电阻的误差,最高温度信号电压可保守地选择为+180mV。将Rt上的电压限制到+180mV也有利于避免Rt的自加热问题。一旦最大电压选定,根据在85°C (Rt = 132.8 ),VB = 5.25V的条件下产生该最大电压可以计算得到R1。




关键词: 电阻     电桥     基础     测量     输出     应变计     转换器     使用    

菜鸟
2007-08-14 17:16:37     打赏
2楼
 

顺便给大家推荐一个元器件搜索网站,我用的还不错,希望和大家分享,

http://www.koobid.com/ 电子元器件库存搜索,IC代理商查询,元器件入门,功能强大


共2条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]