这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 嵌入式开发 » MCU » ARM嵌入式的VGA接口的制作

共1条 1/1 1 跳转至

ARM嵌入式的VGA接口的制作

菜鸟
2011-07-11 13:36:10     打赏

       大多数嵌入式产品的显示终端都选择LCD,但在某些需要大 屏幕显示的应用中,工业级LCD的价格比较昂贵,且现有的大屏幕显示器(包括CRT显示器和LCD显示器)一般都采用统一的15针VGA显示接口。三星公 司ARM9芯片S3C2410以其强大的功能和高性价比在目前嵌入式产品中得到广泛的应用。

  1 VGA接口介绍

  近年来,业界制定出了众多数字化的显示接口协议,较为典型的是DVI(Digital Visual Interface)。由于数字接口的标准还未统一,厂商支持各自的标准,导致数字接口的标准迟迟未定。VGA接口是一个模拟信号接口。作为在显示领域多 年的接口标准,直到今天它仍是所有显示终端最为成熟的标准接口,现在某些高端的电视也支持VGA接口。

  15针VGA接口信号定义如表1所列。除了2个NC信号、3根显示数据总线和5个GND信号,比较重要的信号是3个RGB彩色分量信号和2个扫 描同步信号 HSYNC和VSYNC。VGA接口中彩色分量采用RS343电平标准。RS343电平标准的峰峰值电压为1 V。该标准定义的4个电平范围是:

  白电平--+0.714 V;

  黑电平--+0.054 V;

  消隐电平--0 V;

  同步电平---0.286 V。

  2 S3C2410 LCD控制器简介

  三星公司的ARM9芯片S3C2410功能强大,性价比高,在目前的嵌入式产品中得到了广泛的应用。S3C2410带有LCD控制器,可以很方便地控制驱动扫描式接口的LCD显示。

  2.1 引脚功能信息

  LCD控制器提供了扫描式数据传输引脚和时序控制引脚,具体描述如下:

  VFRAME/VSYNC--LCD控制器和LCD驱动器之间的帧同步信号。该信号告诉LCD屏新一帧开始了。LCD控制器在一帧显示完成后立即插入一个VFRAME信号,开始新一帧的显示。

  VLINE/HSYNC--LCD控制器和LCD驱动器之间的行同步脉冲信号。该信号用于LCD驱动器将水平线(行)移位寄存器的内容传送给LCD屏显示。LCD控制器在整行数据移人LCD驱动器后,插入一个VLINE信号。

  VCLK--LCD控制器和LCD驱动器之间的像素时钟信号。LCD控制在VCLK的上升沿处送出数据,LCD驱动器在VCLK的下降沿处采样。

  VM/VDEN--LCD驱动器的AC信号。VM信号被LCD驱动器用于改变行和列的电压极性,从而控制像素点的显示。VM信号可以与每帧同步,也可以与可变数据的VLINE信号同步。

  VD[23:0]--LCD像素数据输出端口。

  2.2 寄存器

  S3C2410的LCD控制寄存器主要有:LCDCON1寄存器、LCDCON2寄存器、LCDCON3寄存器、LCDCON4寄存器、 LCDCON5寄存器。这些寄存器的设置与显示屏信息、控制时序和数据传输格式等密切相关,在设计中需要根据显示设备的具体信息正确设置这些寄存器才能使 S3C2410正常控制驱动不同的显示屏。

  2.3 内部结构

  S3C2410的LCD控制器用来传输图像数据并产生相应的控制信号,由REGBANK(控制寄存器组)、LCDCD-MA(专用DMA)、 VIDPCS (视频信号处理单元)、LPC3600和TIMEGEN(时序信号产生单元)组成,所示。其中REGBANK包含17个可编程寄存器和几个256× 16的调色板存储器,用来配置LCD控制器并设置相应的参数;而LCDCDMA提供了视频信号的快速传输通道,自动通过系统总线从系统帧缓存中取出视频数 据并传输到视频信号处理单元;VIDPCS将专用DMA中取出的信号整形并提高驱动能力等处理后,输出到外部数据端口VD[23:0];TIMEGEN和 LPC3600负责产生LCD所需要的控制时序。

  3 VGA接口设计

  利用高性能视频D/A转换芯片ADV7120将S3C24l0自带的LCD扫描式接口转换为VGA接口,然后用带有VGA接口的显示器显示。

  3.1 ADV7120简介

  ADV7120是美国ADI公司生产的高速视频数模转换芯片,其像素扫描时钟频率有30 MHz、50 MHz、80 MHz三个等级。ADV7120在单芯片上集成了3个独立的8位高速D/A转换器,可以分别处理红、绿、蓝视频数据,特别适用于高分辨率模拟接口的显示终 端和要求高速D/A转换的应用系统。

  ADV7120的输入及控制信号非常简单:3组8位的数字视频数据输入端,分别对应RGB视频数据,数据输入端采用标准TTL电平接口;4条视 频控制信号线包括复合同步信号SYNC、消隐信号BLANK、白电平参考信号REF WHITE和像素时钟信号CLOCK;外接一个1.23 V数模转换参考电压源和1个输出满度调节。只有4条输出信号线:模拟RGB信号采用高阻电流源输出方式,可以直接驱动75Ω同轴传输线;同步参考电流输出 信号Isync用来在绿视频模拟信号中编码视频同步信息。

  3.2 原理图设计

  VGA接口的同步信号和LCD扫描式接口的同步信号是一致的。利用ADV7120可以方便地将S3C24l0的LCD扫描式接口转换成VGA接口,电路原理所示。

  S3C2410处理器接口中的同步扫描信号HSYNC和VSYNC直接接到VGA接口,VDEN信号(显示数据有效信号)则被用于控制 ADV7120芯片。由于ADV7120对参考电平的要求精度很高,不能以电阻分压电路代替。在此采用了1.2 V电压基准芯片AD589来产生参考电压。该电路设计中需要注意的是,在PCB布板时要将模拟地和数字地分开。4 S3C2410相关寄存器设置

 

  以分辨率为640×480、刷新频率为60 Hz、16位彩色显示模式为例,根据图3所示VGA接口同步信号时序,介绍S3C2410中LCDCON1~LCDCON5寄存器的设置。

  4.1 LCDCONl寄存器

  LINECNT:行计数器的状态位。只读,不用设置。

  CLKVAL:确定VCLK频率的参数。公式为VCLK=HCLK/[(CLKVAL+1)×2],单位为Hz。笔者所用的硬件系统HCLK=100 MHz,640×480的显示屏需要VCLK=20 MHz,故需设置CLKVAL=1。

  MMODE:确定VM的改变速度。在此选择MMODE=O,为每帧变化模式。

  PNRMODE:确定扫描方式。选择PNRMODE=0x3,为TFT LCD面板扫描模式。

  BPPMODE:确定BPP(每像素位数)模式。在此选择BPPMODE=0xC,为TFT 16位模式。

  ENVID:数据输出和逻辑信号使能控制位。选择ENVID=1,为允许数据输出和逻辑控制。

  4.2 LCDCON2寄存器

  VBPD:确定帧同步信号和帧数据传输前的一段延迟时间,是帧数据传输前延迟时间和行同步时钟间隔宽度的比值,,VBPD=t3/t6=1.02 mS/31.77μs=32。

  LINEVAL:确定显示的垂直方向尺寸。公式:LINEVAL=YSIZE-1=479。

  VFPD:确定帧数据传输完成后到下一帧同步信号到来的一段延迟时间,是帧数据传输后延迟时间和行同步时钟间隔宽度的比值,,VFPD=t5/t6=0.35 ms/31.77μs=11。

  VSPW:确定帧同步时钟脉冲宽度,是帧同步信号时钟宽度和行同步时钟间隔宽度的比值。,VSPW=t2/t6=0.06 ms/31.77μs=2。

  4.3 LCDCON3寄存器

  HBPD:确定行同步信号和行数据传输前的一段延迟时间,描述行数据传输前延迟时间内VCLK脉冲个数,,VBPD=t7×VCLK=1.89 μs×25MHz=47。

  HOZAL:确定显示的水平方向尺寸。公式HOZAL=XSIZE-1=639。

  HFPD:确定行数据传输完成后到下一行同步信号到来的一段延迟时间,描述行数据传输后延迟时间内VCLK脉冲个数,,HFPD=t9×VCLK=0.94 μs×25 MHz=24。

  4.4 LCDCON4寄存器

  HSPW:确定行同步时钟脉冲宽度。描述行同步脉冲宽度时间内VCLK脉冲个数,,HSPW=3.77μs×25 MHz=94。

  4.5 LCDCON5寄存器

  VSTATUS:垂直方向状态。只读,不用设置。

  HSTATUS:水平方向状态。只读,不用设置。

  BPP24BL:确定显示数据存储格式。此处设置BPP24BL=0x0,为小端模式存放。

  FRM565:确定16位数据输出格式。此处设置FRM565=0x1,为5:6:5格式输出。

  INVVCLK:确定VCLK脉冲有效边沿极性。根据屏幕信息确定,此处选择INVVCLK=0xl,VCLK上升沿到来时数据传输开始。

  INVVLlNE:确定HSYNC脉冲的极性。由图3可知,为负极性,设置INVVLINE=0x1选择负极性脉冲。

  INVVFRAME:确定VSYNC脉冲的极性。由图3可以看出,为负极性,故设置INVVFRAME=0x1选择负极性脉冲。

  INVVD:确定数据输出的脉冲极性。根据屏幕信息确定,此处设置INVVD=0x0选择正极性脉冲。

  INVVDEN:确定VDEN信号极性。根据屏幕信息确定,此处设置INVVDEN=0x0为正极性脉冲。

  INVPWREN:确定PWREN信号极性。根据屏幕信息确定,此处设置NVPWREN=0x0为正极性脉冲。

  INVLEND:确定LEND信号极性。根据屏幕信息确定,此处设置INVLEND=0x0为正极性脉冲。

  PWREN:PWREN信号输出允许。设置PWREN=0xl,允许PWREN输出。

  ENLEND:LEND输出信号允许。设置ENLEND=0x1,允许LEND输出。

  BSWP:字节交换控制位。根据各自需要设置,此处设置BSWP=0x0,禁止字节交换。

  HWSWP:半字交换控制位。根据各自需要设置,此处设置HWSWP=0xl,使能半字节交换。

  5 讨论

  S3C2410处理器能够驱动24位颜色模式的VGA接口,但当处理器数据总线负载过大时,显示效果就不太理想。具体分析所需数据带宽如下:

  S3C2410处理器工作在640×480×60 Hz×24位(分辨率为640×480、刷新频率为60 Hz、24位色彩)模式下的数据带宽为:640×480×60×4/(1 024×1 024)=70.3MB/s(24位颜色实际占用32位数据量),这些数据都需要利用DMA方式通过系统的数据总线从SDRAM中获得。而S3C2410 处理器在100 MHz的总线频率下,32位内存的峰值带宽是100×32/8=400MB/s,实际带宽也就100~200 MB/s。那么70.3 MB/s的显示数据对于S3C2410处理器过于沉重了,显示器的屏幕经常会出现短暂的黑屏。这是因为系统总线太忙,LCD扫描式接口的数据跟不上,扫描 时钟的频率暂时变慢导致CRT显示器的同步信号不符合规范所致。若用16位颜色模式,则数据带宽减为640×480×60×2/(1 024×1 024)=35.2MB/s。实际测试中,工作在16位颜色模式下,可以正常显示60 Hz下的640×480的VGA图形。

  6  总结

综上分析,如果要支持高分辨率和高刷新率的显示,需要比较大的数据带宽,对处理器的频率和总线频率要求较高。本设计可以完全支持16位色彩下 640×480×60 Hz显示模式的CRT显示,并且如果采用LCD作为显示界面,LCD对刷新率的要求和CRT显示器不同,LCD可以在刷新率为30 Hz的情况下正常显示。




关键词: 嵌入式     接口     制作     显示     S3C2410     信号         

共1条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]