Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
confused what"{1,#,2,3}"means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / \ 2 3 / 4 \ 5
The above binary tree is serialized as"{1,2,3,#,#,4,#,#,5}".
题意:输出1到n组成的所有二叉搜索树的结构
思路:
选定1-n的一个数字i作为根节点、0到i-1是左子树, i+1-n是右子树,两层循环;
class Solution
{
public:
vector<TreeNode*> generateTrees(int n)
{
return create(1, n);
}
vector<TreeNode*> create(int left, int right)
{
vector<TreeNode*> res;
if (left>right)
{
res.push_back(NULL);
return res;
}
for (int i=left; i<=right; i++)
{
vector<TreeNode*> leftTree = create(left, i-1);
vector<TreeNode*> rightTree = create(i+1, right);
for (int j = 0; j<leftTree.size(); j++)
{
for (int k = 0; k<rightTree.size(); k++)
{
TreeNode* root = new TreeNode(i);
root->left = leftTree[j];
root->right = rightTree[k];
res.push_back(root);
}
}
}
return res;
}
};