实现传统的机器学习模型和神经网络在检测恶意网络流量方面已经变得微不足道,并引发了许多研究人员对这一领域的兴趣。标准的实现包括使用sklearn、tensorflow和keras等软件包中的基线模型。在本文中,我们试图推动网络检测领域的发展,并产生在这些模型的速度和性能方面有很大好处的结果。我们利用英特尔的DAAL和OpenVINO包,因为它们是目前公开的两种最好的性能提升方法。此外,我们将进行比较,以确定这两个英特尔软件包对网络入侵检测的影响。
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |
打赏帖 | |
---|---|
与电子爱好者谈读图二被打赏50分 | |
【FRDM-MCXN947评测】Core1适配运行FreeRtos被打赏50分 | |
【FRDM-MCXN947评测】双核调试被打赏50分 | |
【CPKCORRA8D1B评测】---移植CoreMark被打赏50分 | |
【CPKCORRA8D1B评测】---打开硬件定时器被打赏50分 | |
【FRDM-MCXA156评测】4、CAN loopback模式测试被打赏50分 | |
【CPKcorRA8D1评测】--搭建初始环境被打赏50分 | |
【FRDM-MCXA156评测】3、使用FlexIO模拟UART被打赏50分 | |
【FRDM-MCXA156评测】2、rt-thread MCXA156 BSP制作被打赏50分 | |
【FRDM-MCXN947评测】核间通信MUTEX被打赏50分 |