弱上拉:没有绝对准确的定义,相对于强上拉而言,一般指单片机内建于IO内的上拉,常用MOS管实现,能源出的上拉电流能力有限,一般等效上拉电阻值在10-100k量级。
推挽输出:即常说的“图腾柱”输出,数字电路的输出部分由2只晶体管或MOS管实现,一个接VCC一个接GND,以强化输出负载能力。
施密特输入:一种数字整形技术,能根据“上一次”电路的状态动态改变IO辨认高/低电平的阀值,通常称为施密特回差,用于对数字信号进行整形,提高抗噪声能力及应对缓慢上升的信号,以不使其出现模糊电平问题。
强上拉:相对于弱上拉而言,能够源出较强电流能力的上拉,比如通过在IO口外接上拉电阻实现,比如470欧姆的上拉电阻。
开漏:与图腾柱相对,数字电路的输出端只有图腾柱的下一半而缺少上一半,同样是一种常见的数字电路输出级样式,主要用于实现线与和实现端口电平转换。

好,上图
将电源直接接到端口上是绝对不可以的.当按下按键的时候,会有很大的电流进入单片机.在工程上,这种往往应该加限流电阻的.一般选择1K的就可以.如果选择太大的电阻也不好,因为电阻上面压降太大,造成输入比应有的高电平低,造成错误. 其次,就算加了限流,这个电路也是不能工作的.检查AT89C51的DataSheet就会发现.技术手册中说:P0口是没有上拉电阻的端口;P1,P2,P3口带有上拉电阻.问题就出在这里,什么是上拉电阻,来看看图:
上面这个图,是红外线接收的电路图,看上面的这个电阻,就是上拉电阻.我们可以试图理解一下51单片机P2口的这个上拉电阻为这种形式:
其中的R就是上拉电阻.如果像我的那个师弟那样设计电路,电路就成了以下这种形式了:
看,从这个电路上,我们可以清晰的看出,不管你按键是否按下,IO端口上都是高电平.问题就在这里,我让我的这个师弟测测IO端口的电平在按下按键前后的变化,结果果然不出所料:不管他是否按下按键,都是高电平!!
将电源直接接到端口上是绝对不可以的.当按下按键的时候,会有很大的电流进入单片机.在工程上,这种往往应该加限流电阻的.一般选择1K的就可以.如果选择太大的电阻也不好,因为电阻上面压降太大,造成输入比应有的高电平低,造成错误. 其次,就算加了限流,这个电路也是不能工作的.检查AT89C51的DataSheet就会发现.技术手册中说:P0口是没有上拉电阻的端口;P1,P2,P3口带有上拉电阻.问题就出在这里,什么是上拉电阻,来看看图:





回复
打赏帖 | |
---|---|
【STM32F769】AI之与本地deepseek对接被打赏50分 | |
Buck电路工作在CCM模式下电感电流的计算公式是什么?被打赏5分 | |
buck电路工作原理被打赏5分 | |
基于MSPM0L1306的MODBUS-RTU协议通讯实验被打赏100分 | |
我想要一部加热台+多合一调试工具被打赏18分 | |
每周了解几个硬件知识+485硬件知识分享被打赏10分 | |
【换取手持数字示波器】树莓派PICO调试器官方固件本地化部署实践被打赏24分 | |
【换取手持数字示波器】分享一个KEIL无法识别CMSIS-DAP调试器的解决办法被打赏20分 | |
【换取手持数字示波器】分享一个自制的ArduinoNano扩展板底板被打赏23分 | |
【换取手持示波器】树莓派PICOW网页烟花被打赏18分 |