一、环境搭建。
这次活动开发板 Adafruit开发板 1528-5691-ND 主控为ESP32-S3。可以支持esp-idf、Arduino、microPython、CircuitPython。这次完成任务,我使用的是CircuitPython。
从https://learn.adafruit.com/esp32-s3-reverse-tft-feather/update-tinyuf2-bootloader-for-circuitpython-10-4mb-boards-only下载固件“tinyuf2-adafruit_feather_esp32s3_reverse_tft-0.33.0-combined.bin”,和CircuitPython的固件文件。使用flash tool先将固件烧入开发板。然后通过电脑将CircuitPython拖入U盘即可完成CircuitPython环境的搭建。开发工具我选择用thonny。


tinyuf2-adafruit_feather_esp32s3_reverse_tft-0.33.0-combined.zip
adafruit-circuitpython-adafruit_feather_esp32s3_reverse_tft-en_US-10.0.3.zip
二、驱动板载的全彩LED灯。
Adafruit-ESP32-S3-TFT-Feather板子上集成了一颗WS2812全彩LED灯。在CircuitPython下使用neopixel库来驱动。
import time import board import neopixel pixel = neopixel.NeoPixel(board.NEOPIXEL, 1) pixel.brightness = 0.3 while True: pixel.fill((255, 0, 0)) time.sleep(0.5) pixel.fill((0, 255, 0)) time.sleep(0.5) pixel.fill((0, 0, 255)) time.sleep(0.5)

三、接近传感器的测试。
购买的器件中有一个接近传感器Littelfuse 接近传感器 18-59001-1-T-02-A-ND。测试了一下,是一个霍尔传感器。当有磁铁靠近探头时,就会短路,用来无接触地感知物体的接近。
import board
import digitalio
import time
# 初始化按键(假设按键连接在 GPIO0 引脚)
button = digitalio.DigitalInOut(board.D5)
button.direction = digitalio.Direction.INPUT
button.pull = digitalio.Pull.UP # 上拉电阻
while True:
if not button.value: # 按键按下时读取值为 False
print("磁铁靠近!")
time.sleep(0.2) # 简单防抖延时
time.sleep(0.01)
四、基础任务1、实现颜色传感器驱动,按键获取当前颜色数据并可以通过串口或屏幕进行打印。2、实现板载RGB的全彩控制,实时显示当前获取的颜色
给Adafruit-ESP32-S3-TFT-Feather板子焊上了排针,使用面包板来连接DFRobot 颜色传感器。这里遇到一个问题。开发板的背面有电池接口,焊上排针后,排针没有比电池接口高多少。导致插入面包板时插不紧,时不时有接触不良情况出现。
TCS3200颜色传感器是一款全彩的颜色检测器,包括了一块TAOS TCS3200RGB感应芯片和4个白色LED灯,TCS3200能在一定的范围内检测和测量几乎所有的可见光。TCS3200有大量的光检测器,每个都有红绿蓝和清除4种滤光器。每6种颜色滤光器均匀地按数组分布来清除颜色中偏移位置的颜色分量。内置的振荡器能输出方波,其频率与所选择的光的强度成比例关系。


这里在使用TCS3200颜色传感器时,我使用一块TFT屏幕作为颜色的来源,所以就没有打开TCS3200颜色传感器上的LED灯。颜色只是识别红、绿、蓝三种颜色。在TCS3200颜色传感器初始化时进行一次使用白光的校准。然后每次按下按键就开始测量当前颜色,并在串口和屏幕打印识别信息。最后驱动LED灯显示对应的颜色。

TCS3200类的实现。
# tcs3200.py: CircuitPython driver for the TCS3200 color sensor
#
# Copyright (c) U. Raich
# Adapted for CircuitPython
# Released under MIT license
import time
import board
import digitalio
import pulseio
class TCS3200:
NUM_CYCLES = 44 # 测试多少个周期
def __init__(self, s0_pin, s1_pin, s2_pin, s3_pin, out_pin,led_pin=None):
# 初始化控制引脚
self.s0 = digitalio.DigitalInOut(s0_pin)
self.s1 = digitalio.DigitalInOut(s1_pin)
self.s2 = digitalio.DigitalInOut(s2_pin)
self.s3 = digitalio.DigitalInOut(s3_pin)
self.out = digitalio.DigitalInOut(out_pin)
# 配置引脚方向
self.s0.direction = digitalio.Direction.OUTPUT
self.s1.direction = digitalio.Direction.OUTPUT
self.s2.direction = digitalio.Direction.OUTPUT
self.s3.direction = digitalio.Direction.OUTPUT
self.out.direction = digitalio.Direction.INPUT
# 设置频率缩放比为20% (最佳精度)
self.set_frequency_scaling(20)
# 白平衡校准系数 (初始值为1,需要实际校准)
self.r_scal = 1.0
self.g_scal = 1.0
self.b_scal = 1.0
if led_pin:
self._led = digitalio.DigitalInOut(led_pin)
self._led.direction = digitalio.Direction.OUTPUT
self.led = True
@property
def led(self):
return self._led.value if self._led else None
@led.setter
def led(self, state):
if self._led:
self._led.value = state
def set_frequency_scaling(self, scaling):
"""
设置传感器的频率缩放比例
# s0 s1
# L L 关闭
# L H 2%
# H L 20%
# H H 100%
"""
if scaling == 2: # 2%
self.s0.value = False
self.s1.value = True
# print("TCS3200传感器设置频率缩放比为:%2 -> s0,s1[0,1]")
elif scaling == 20: # 20%
self.s0.value = True
self.s1.value = False
# print("TCS3200传感器设置频率缩放比为:%20 -> s0,s1[1,0]")
elif scaling == 100: # 100%
self.s0.value = True
self.s1.value = True
# print("TCS3200传感器设置频率缩放比为:%100 -> s0,s1[1,1]")
else: # 关闭
self.s0.value = False
self.s1.value = False
# print("TCS3200传感器设置频率缩放比为:%0 -> s0,s1[0,0]")
time.sleep(0.01) # 短暂延时稳定频率缩放比例
def set_color_filter(self, filter_type):
"""
设置传感器的颜色滤波器
# s2 s3
# L L Red
# H H Green
# L H Blue
# H L Clear(no filter)
"""
if filter_type == "Red":
self.s2.value = False
self.s3.value = False
# print("TCS3200传感器设置颜色滤波器为:Red -> s2,s3[0,0]")
elif filter_type == "Green":
self.s2.value = True
self.s3.value = True
# print("TCS3200传感器设置颜色滤波器为:Green -> s2,s3[1,1]")
elif filter_type == "Blue":
self.s2.value = False
self.s3.value = True
# print("TCS3200传感器设置颜色滤波器为:Blue -> s2,s3[0,1]")
else: # "Clear"
self.s2.value = True
self.s3.value = False
# print("TCS3200传感器设置颜色滤波器为:Clear -> s2,s3[1,0]")
time.sleep(0.01) # 短暂延时稳定滤波器
def _bubble_sort(self, arr, n):
# 简单的冒泡排序实现从小到大排列
for i in range(n):
for j in range(0, n - i - 1):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
def measure_frequency(self):
# 测量频率,并转换单位为Hz
timestamps = []
last_state = self.out.value
while len(timestamps) < self.NUM_CYCLES:
current_state = self.out.value
if current_state != last_state: # 发生边缘变化
timestamps.append(time.monotonic_ns())
last_state = current_state
# 计数周期
periods = []
for i in range(2, len(timestamps), 2):
period_ns = timestamps[i] - timestamps[i - 2] # 一个完整周期(两个边缘)
periods.append(period_ns)
# 数据从小到大排列
self._bubble_sort(periods, len(periods))
# print("原始数据系列:", len(periods), periods)
# 修剪数据,计算总和
totals = 0
start_index = 5
end_index = len(periods) - start_index
# print(f"数据取值编号:{start_index:.d}->{end_index-1:.d}")
for i in range(start_index, end_index, 1):
totals += periods[i]
# print(f"修剪数据系列 -> {i:.d}, {periods[i]:.d}")
# avg_period_ns = sum(periods) / len(periods)
avg_period_ns = totals / (end_index - start_index)
# print(f"原始数据总和 -> {totals:.d}, {(end_index - start_index):.d}")
# print(f"原始数据均值 -> {avg_period_ns:.3f}")
frequency = 1_000_000_000 / avg_period_ns # 转换为 Hz
# print(f"原始频率值 -> Frequency:{frequency:.3f}")
return frequency
def read_rgb_freq(self):
# 读取RGB三个通道的频率值
red_freq = 0
green_freq = 0
blue_freq = 0
# 读取红色分量 (S2=0, S3=0)
self.set_color_filter("Red")
red_freq = self.measure_frequency()
# 读取绿色分量 (S2=1, S3=1)
self.set_color_filter("Green")
green_freq = self.measure_frequency()
# 读取蓝色分量 (S2=0, S3=1)
self.set_color_filter("Blue")
blue_freq = self.measure_frequency()
# 清除绿色分量 (S2=1, S3=0)
# self.set_color_filter("Clear")
# print(f"原始频率值 -> R:{red_freq:.3f}, G:{green_freq:.3f}, B:{blue_freq:.3f}")
return red_freq, green_freq, blue_freq
def calibrate_white_balance(self):
# 白平衡校准 - 将传感器对准白色参考物后调用此方法
print("正在进行白平衡校准...")
print("请将传感器对准白色参考物")
# 读取白色参考物的原始频率
red, green, blue = self.read_rgb_freq()
# 换算为RGB值 (18000/255 = 70)
red = red / 70 if red > 0 else 1.0
green = green / 70 if green > 0 else 1.0
blue = blue / 70 if blue > 0 else 1.0
# 计算校准系数 (假设我们希望白色时RGB值接近255)
self.r_scal = 255.0 / red if red > 0 else 1.0
self.g_scal = 255.0 / green if green > 0 else 1.0
self.b_scal = 255.0 / blue if blue > 0 else 1.0
print(f"校准完成 -> R:{self.r_scal:.3f}, G:{self.g_scal:.3f}, B:{self.b_scal:.3f}")
def read_rgb(self):
# 读取RGB三个通道的频率值,应用白平衡,并转换为RGB
r = 0
g = 0
b = 0
# 读取RGB三个通道的频率值
red_freq, green_freq, blue_freq = self.read_rgb_freq()
# 应用白平衡校准 (18000/255 = 70)
r = int(red_freq / 70 * self.r_scal)
g = int(green_freq / 70 * self.g_scal)
b = int(blue_freq / 70 * self.b_scal)
# 限制在0-255范围
r = max(0, min(255, r))
g = max(0, min(255, g))
b = max(0, min(255, b))
return r, g, b#1、实现颜色传感器驱动,按键获取当前颜色数据并可以通过串口或屏幕进行打印;
import board
import digitalio
import time
import neopixel
import displayio
import terminalio
from adafruit_display_text import label
from tcs3200 import TCS3200
import neopixel
pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
def detect_color(r, g, b):
"""
智能颜色识别算法
返回: 颜色名称字符串
"""
total = r + g + b
if total < 30: return "黑色"
if total > 600: return "白色"
# 计算各通道占比
r_ratio, g_ratio, b_ratio = r/total, g/total, b/total
# 基于比例和绝对值的综合判断
if r_ratio > 0.45 and r > 80: return "RED"
if g_ratio > 0.42 and g > 80: return "GREEN"
if b_ratio > 0.42 and b > 80: return "BLUE"
return "UNKNOWN"
# 初始化板载按键D0/BOOT0,按下接地
button0 = digitalio.DigitalInOut(board.BUTTON)
button0.switch_to_input(pull=digitalio.Pull.UP)
# 创建TCS3200对象
color_sensor = TCS3200(s0_pin=board.A0,s1_pin=board.A1,s2_pin=board.A2,
s3_pin=board.A3,out_pin=board.A5 )
#首先做白平衡校准
color_sensor.calibrate_white_balance()
# 主循环
while True:
time.sleep(0.05)
# 读取按键0
if not button0.value:
print("button0按下")
if color_sensor is not None:
try:
# 调用read_rgb方法读取颜色值
R_Val, G_Val, B_Val = color_sensor.read_rgb()
print("RGB: {:.3f},{:.3f},{:.3f}".format(R_Val, G_Val, B_Val),detect_color(R_Val, G_Val, B_Val))
if detect_color(R_Val, G_Val, B_Val)=="RED":
pixel.fill((255, 0, 0))
elif detect_color(R_Val, G_Val, B_Val)=="GREEN":
pixel.fill((0, 255, 0))
elif detect_color(R_Val, G_Val, B_Val)=="BLUE":
pixel.fill((0, 0, 255))
else:
pixel.fill((0, 0, 0))
except Exception as e:
print(f"读取颜色传感器错误: {e}")校正
识别到红色。板载的全彩LED灯,在板子的背面,只能通过边上漏出的光看见显示的颜色。



基础任务3、实现蜂鸣器驱动,并播放八阶音符
手头有一个蜂鸣器模块。使用的是手机上的蜂鸣器。效果要比圆柱形蜂鸣器好一些。ESP32S3使用pwm方波,通过变换频率来变换音阶。

import board
import pwmio
import time
pwm = pwmio.PWMOut(board.D13, duty_cycle=0, frequency=440, variable_frequency=True)
# 8 音阶频率(C4, D4, E4, F4, G4, A4, B4, C5)
note_names = ['C4', 'D4', 'E4', 'F4', 'G4', 'A4', 'B4', 'C5']
frequencies = [261, 293, 329, 349, 392, 440, 493, 523]
# 音符播放控制函数
def play_note(note):
if note in range(len(note_names)):
names = note_names[note]
freq = frequencies[note]
print(f"Playing {names} at {freq} Hz")
pwm.frequency = int(freq)
pwm.duty_cycle = 2 ** 10
else:
print(f"Note {names} is not valid in the scale")
# 停止播放音符
def stop_playing():
pwm.duty_cycle = 0
note_index = 0 # 当前音符的索引
while True:
stop_playing() # 停止当前音符(如果正在播放)
play_note(note_index) # 播放下一个音符
note_index = (note_index + 1) % len(note_names) # 切换到下一个音符,若达到最后一个音符则从头开始
time.sleep(1) # 延时1秒
我要赚赏金
