本文将探讨实际的开关电源产生的噪声。开关电源产生的噪声首先,使用同步整流型降压DC/DC转换器的等效电路来了解一下开关电流的路径。 SW1为高边开关,SW2为低边开关。SW1导通(SW2为OFF)时,电流路径是从输入电容器到SW1、再经由电感L到输出电容器。SW2导通(SW1为OFF)时,电流路径是从SW2经由L再到输出电容器。下图表示这些电流路径的差分,每当开关ON/OFF时,红色线路的电流都会急剧变化。该环路的电流变化非常剧烈,所以会因PCB板布线电感而在环路内会产生高频振铃。 图中表示构成电源电路的外置部件、实装多层电路板的寄生分量及振铃的关系。 红色部分标出的是上图所表示的电流在急剧变化的环路中的寄生分量。布线中存在布线电感,通常每1mm有1nH左右的电感。另外,电容器中存在等效串联电感ESL,MOSFET的各引脚间存在寄生电容。因此,如红框内的图例所示,开关节点将产生100MHz~300MHz的振铃。所产生的电流及电压,可通过两个公式求得。此振铃会作为高频开关噪声带来各种影响。虽然有采取相应的措施,但由于无法从电源IC处去除安装电路板的寄生分量,因此只能通过PCB板布局设计及采用去藕电容来解决。关于PCB板布局,在DC/DC转换器的“PCB板布局”部分有详细介绍,请参考。本文将探讨实际的开关电源产生的噪声。开关电源产生的噪声首先,使用同步整流型降压DC/DC转换器的等效电路来了解一下开关电流的路径。 SW1为高边开关,SW2为低边开关。SW1导通(SW2为OFF)时,电流路径是从输入电容器到SW1、再经由电感L到输出电容器。SW2导通(SW1为OFF)时,电流路径是从SW2经由L再到输出电容器。下图表示这些电流路径的差分,每当开关ON/OFF时,红色线路的电流都会急剧变化。该环路的电流变化非常剧烈,所以会因PCB板布线电感而在环路内会产生高频振铃。 图中表示构成电源电路的外置部件、实装多层电路板的寄生分量及振铃的关系。 红色部分标出的是上图所表示的电流在急剧变化的环路中的寄生分量。布线中存在布线电感,通常每1mm有1nH左右的电感。另外,电容器中存在等效串联电感ESL,MOSFET的各引脚间存在寄生电容。因此,如红框内的图例所示,开关节点将产生100MHz~300MHz的振铃。所产生的电流及电压,可通过两个公式求得。此振铃会作为高频开关噪声带来各种影响。虽然有采取相应的措施,但由于无法从电源IC处去除安装电路板的寄生分量,因此只能通过PCB板布局设计及采用去藕电容来解决。关于PCB板布局,在DC/DC转换器的“PCB板布局”部分有详细介绍,请参考。 |
共1条
1/1 1 跳转至页
开关电源产生的噪声
关键词: 开关电源 噪声
共1条
1/1 1 跳转至页
回复
| 有奖活动 | |
|---|---|
| 2026年“我要开发板活动”第三季,开始了! | |
| 硬核工程师专属补给计划——填盲盒 | |
| “我踩过的那些坑”主题活动——第002期 | |
| 【EEPW电子工程师创研计划】技术变现通道已开启~ | |
| 发原创文章 【每月瓜分千元赏金 凭实力攒钱买好礼~】 | |
| 【EEPW在线】E起听工程师的声音! | |
| 高校联络员开始招募啦!有惊喜!! | |
| 【工程师专属福利】每天30秒,积分轻松拿!EEPW宠粉打卡计划启动! | |
我要赚赏金打赏帖 |
|
|---|---|
| PTC与NTC功能常规对比被打赏¥14元 | |
| 【分享开发笔记,赚取电动螺丝刀】关于3pin锂电池接口的介绍/使用被打赏¥16元 | |
| 以启明云端ESP32P4开发板实现TF卡读写功能被打赏¥28元 | |
| 【分享开发笔记,赚取电动螺丝刀】树莓派5串口UART0配置被打赏¥25元 | |
| 【STM32F103ZET6】17:分享在Rtos项目中断管理的使用经验被打赏¥23元 | |
| 【STM32F103ZET6】16:分享在中断中恢复串口任务,遇到的问题被打赏¥31元 | |
| 在FireBeetle2ESP32-C5上实现温度大气压检测及显示被打赏¥21元 | |
| 【分享开发笔记,赚取电动螺丝刀】SAME51双串口收发配置被打赏¥27元 | |
| Chaos-nano操作系统在手持式VOC检测设备上的应用被打赏¥37元 | |
| 【分享开发笔记,赚取电动螺丝刀】关于在导入第三方库lib时,wchart类型冲突的原因及解决方案被打赏¥30元 | |
SW1为高边开关,SW2为低边开关。SW1导通(SW2为OFF)时,电流路径是从输入电容器到SW1、再经由电感L到输出电容器。SW2导通(SW1为OFF)时,电流路径是从SW2经由L再到输出电容器。下图表示这些电流路径的差分,每当开关ON/OFF时,红色线路的电流都会急剧变化。该环路的电流变化非常剧烈,所以会因PCB板布线电感而在环路内会产生高频振铃。
图中表示构成电源电路的外置部件、实装多层电路板的寄生分量及振铃的关系。
红色部分标出的是上图所表示的电流在急剧变化的环路中的寄生分量。布线中存在布线电感,通常每1mm有1nH左右的电感。另外,电容器中存在等效串联电感ESL,MOSFET的各引脚间存在寄生电容。因此,如红框内的图例所示,开关节点将产生100MHz~300MHz的振铃。所产生的电流及电压,可通过两个公式求得。此振铃会作为高频开关噪声带来各种影响。虽然有采取相应的措施,但由于无法从电源IC处去除安装电路板的寄生分量,因此只能通过PCB板布局设计及采用去藕电容来解决。关于PCB板布局,
我要赚赏金
