ARM微处理器支持的乘法指令与乘加指令共有6条,可分为运算结果为32位和运算结果为64位两类,与前面的数据处理指令不同,指令中的所有操作数、目的寄存器必须为通用寄存器,不能对操作数使用立即数或被移位的寄存器,同时,目的寄存器和操作数1必须是不同的寄存器。
乘法指令与乘加指令共有以下6条:
— MUL 32位乘法指令
— MLA 32位乘加指令
— SMULL 64位有符号数乘法指令
— SMLAL 64位有符号数乘加指令
— UMULL 64位无符号数乘法指令
— UMLAL 64位无符号数乘加指令
1、 MUL指令
MUL指令的格式为:
MUL{条件}{S} 目的寄存器,操作数1,操作数2
MUL指令完成将操作数1与操作数2的乘法运算,并把结果放置到目的寄存器中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数或无符号数。
指令示例:
MUL R0,R1,R2 ;R0 = R1 × R2
MULS R0,R1,R2 ;R0 = R1 × R2,同时设置CPSR中的相关条件标志位
2、 MLA指令
MLA指令的格式为:
MLA{条件}{S} 目的寄存器,操作数1,操作数2,操作数3
MLA指令完成将操作数1与操作数2的乘法运算,再将乘积加上操作数3,并把结果放置到目的寄存器中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数或无符号数。
指令示例:
MLA R0,R1,R2,R3 ;R0 = R1 × R2 + R3
MLAS R0,R1,R2,R3 ;R0 = R1 × R2 + R3,同时设置CPSR中的相关条件标志位
3、 SMULL指令
SMULL指令的格式为:
SMULL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2
SMULL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位放置到目的寄存器Low中,结果的高32位放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数。
指令示例:
SMULL R0,R1,R2,R3 ;R0 = (R2 × R3)的低32位
;R1 = (R2 × R3)的高32位
4、 SMLAL指令
SMLAL指令的格式为:
SMLAL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2
SMLAL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位同目的寄存器Low中的值相加后又放置到目的寄存器Low中,结果的高32位同目的寄存器High中的值相加后又放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数。
对于目的寄存器Low,在指令执行前存放64位加数的低32位,指令执行后存放结果的低32位。
对于目的寄存器High,在指令执行前存放64位加数的高32位,指令执行后存放结果的高32位。
指令示例:
SMLAL R0,R1,R2,R3 ;R0 = (R2 × R3)的低32位 + R0
;R1 = (R2 × R3)的高32位 + R1
5、 UMULL指令
UMULL指令的格式为:
UMULL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2
UMULL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位放置到目的寄存器Low中,结果的高32位放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的无符号数。
指令示例:
UMULL R0,R1,R2,R3 ;R0 = (R2 × R3)的低32位
;R1 = (R2 × R3)的高32位
6、 UMLAL指令
UMLAL指令的格式为:
UMLAL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2
UMLAL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位同目的寄存器Low中的值相加后又放置到目的寄存器Low中,结果的高32位同目的寄存器High中的值相加后又放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的无符号数。
对于目的寄存器Low,在指令执行前存放64位加数的低32位,指令执行后存放结果的低32位。
对于目的寄存器High,在指令执行前存放64位加数的高32位,指令执行后存放结果的高32位。
指令示例:
UMLAL R0,R1,R2,R3 ;R0 = (R2 × R3)的低32位 + R0
;R1 = (R2 × R3)的高32位 + R1
3.3.4 程序状态寄存器访问指令
ARM微处理器支持程序状态寄存器访问指令,用于在程序状态寄存器和通用寄存器之间传送数据,程序状态寄存器访问指令包括以下两条:
— MRS 程序状态寄存器到通用寄存器的数据传送指令
— MSR 通用寄存器到程序状态寄存器的数据传送指令
1、 MRS指令
MRS指令的格式为:
MRS{条件} 通用寄存器,程序状态寄存器(CPSR或SPSR)
MRS指令用于将程序状态寄存器的内容传送到通用寄存器中。该指令一般用在以下几种情况:
- 当需要改变程序状态寄存器的内容时,可用MRS将程序状态寄存器的内容读入通用寄存器,修改后再写回程序状态寄存器。
- 当在异常处理或进程切换时,需要保存程序状态寄存器的值,可先用该指令读出程序状态寄存器的值,然后保存。
指令示例:
MRS R0,CPSR ;传送CPSR的内容到R0
MRS R0,SPSR ;传送SPSR的内容到R0
2、 MSR指令
MSR指令的格式为:
MSR{条件} 程序状态寄存器(CPSR或SPSR)_<域>,操作数
MSR指令用于将操作数的内容传送到程序状态寄存器的特定域中。其中,操作数可以为通用寄存器或立即数。<域>用于设置程序状态寄存器中需要操作的位,32位的程序状态寄存器可分为4个域:
位[31:24]为条件标志位域,用f表示;
位[23:16]为状态位域,用s表示;
位[15:8]为扩展位域,用x表示;
位[7:0]为控制位域,用c表示;
该指令通常用于恢复或改变程序状态寄存器的内容,在使用时,一般要在MSR指令中指明将要操作的域。
指令示例:
MSR CPSR,R0 ;传送R0的内容到CPSR
MSR SPSR,R0 ;传送R0的内容到SPSR
MSR CPSR_c,R0 ;传送R0的内容到SPSR,但仅仅修改CPSR中的控制位域
[/replyview] [align=right][color=#000066][此贴子已经被作者于2007-1-4 14:56:33编辑过][/color][/align]