设计采用LPC900系列的P89LPC922Flash单片机来实现软件处理。P89LPC922采用高性能的处理器结构,6倍于标准80C51器件的速率,并自带波特率发生器。充分考虑单片机的资源和处理速度,分模块设计——按钮电路,旋钮电路,串口电路,扫描电路。用protel完成电路原理图,制作电路板,在KeilC环境下编写软件。软件和硬件相结合,协同实现整个面板。
1 硬件设计及原理
1.1 旋钮电路设计
1.1.1 数字旋钮的工作原理
本设计选用常见的编码器EC16系列作为数字旋钮,如图1。4、5脚供固定之用,3脚接VCC(+5V),1、2脚在转动时输出连续脉冲。这种旋钮只有两种操作,即正旋和反旋。通过示波器可以观察到如图所示的旋钮转动时1、2脚的波形。
每次转动1、2脚都会产生脉冲信号,正旋时1脚先变高,反旋时2脚先变高。也就是说,正旋和反旋输出信号的相位不同,只要检测出相位,就可以识别正旋和反旋。
1.1.2鉴相电路设计
本文设计的鉴相电路见图2,附箭头所指数字标号对应的波形(以正旋为例)。旋钮的1、2脚分别与D触发器的D端和CLK端连接,根据上面所述旋钮的工作原理,正旋时1脚(D)先变高,2脚(CLK)上升沿时Q端输出1,反旋转时输出0, 端则相反。因此根据Q、 输出为10还是01就可以判断出转动方向。但是,如果继续正旋,Q、 将维持现状(图2中的④③),因此还必须检测脉冲个数来反映转动量。这时不用考虑1、2脚的相位,可将2个信号相与产生新的信号(图2中的⑤),可利用该信号分别和Q、 相与即可分辨出每次旋钮的转动。
最后的输出为⑥和⑦,正旋时⑦线有脉冲,⑥线一直为低,反旋则两根线相反。至此完成了鉴相,下面要解决如何与单片机接口的问题。
1.2 扫描电路设计
用户操作面板时,为了能及时准确地识别哪个按钮和哪个旋钮动作,将按钮和旋钮统一扫描和编码,发送给主机。综合按钮和旋钮特点,根据实际需要采用了8×8的矩阵式键盘结构[3],前4行为按钮,后4行为旋钮。以列信号为扫描输出信号,行信号为检测输入信号。
图3 扫描电路
|
扫描电路的工作原理是:单片机先让②为高,使74ALS245输出为高阻态,然后从P0口输出列扫描数据,再给①高电平,延时后将①变低,使74ALS373锁存列扫描信号,将②变低使74ALS245输出有效,由于数据方向恒定,这样行值数据就从245输入到单片机的P0口。
为了将按钮和旋钮的扫描统一起来,我们把正旋和反旋当做不同的两个按钮按下,旋钮的正旋或反旋也对应唯一的行值和列值。这里的巧妙之处就是采用了三态缓冲器74LS240,每个旋钮电路的输出信号⑥和⑦(即前面图2鉴相电路输出)分别接到74LS240的两组输入端,两组数据的输出都接到4根行线,由列扫描线控制输出哪一组数据。比如:扫描第二列,⑦对应那组输出到4根行线供单片机读入,此时⑥对应那组的输出被禁止。若第二列有旋钮正旋,则其对应的⑦上有脉冲,经240反相后,单片机检测到低电平数据,与按钮按下的情况一致。图3中只用了一片74LS240,可以接4个旋钮,这个电路可以扩充到四片74LS240接16个旋钮。
1.3 与主机通信电路设计
用串口与PC机通信要用串口连线,我们将其3、5脚引出,通过一片MAX232,即可与单片机的串口连接,其电路相对简单,这里不多做叙述了。外部晶振频率选用高频晶振12MHZ,用922自带的波特率发生器,设置波特率为9600,每个字节发送时间约1ms,可以满足高速率和准确性的要求。波特率太低影响速度,太高影响串口数据传输的正确性。
2 软件实现
2.1 按键的抗干扰处理
通常当按键按下以后(不考虑人的操作因素),会有一个5-10ms的抖动期,用软件延时来进行去抖处理。当按键释放后才向主机发送数据,具体方法是用状态机,将按键过程分成以下几个状态S0—S4,如图4所示:
图4 按钮状态图
|
没有按钮动作时,检测线都为高电平,保持在S0状态;扫描面板,当某个按钮按下(相应检测线为低电平)进入S1状态;完成去抖延时(T0中断20次)后进入S2状态,再次扫描面板,检测到低电平且为同一个按钮(行、列线相同)进入S3状态,没有检测到低电平或者不为同一个按钮则再次进入S0状态;按钮释放后进入S4状态,给主机发送按钮编号,发送完成进入S0状态。
2.2 旋钮的抗干扰处理
与档位开关一样,旋钮转动一周会有若干停顿点。停顿点较少的旋钮[2][4]在停止转动时1、2脚总会处于一个稳定的低电平。而停顿点较多的旋钮在停止转动时则电平状态不定,1、2脚有可能处于高电平也可能处于低电平(如图1),所以不可用与之类似的任何检测电平状态的方法来判断旋钮的转动。
用示波器分析波形后得知,不管1、2脚最终状态如何,只要转动旋钮就会有电平变化,从高到低,或从低到高,所以选用动态的边沿扫描。除了在刚上电的时候需要扫描获得每个旋钮的初始状态,每过一段时间都要定时扫描旋钮状态,一旦有电平变化(上升沿/下降沿),就认为是一次有效的转动。定时的时间确定为1ms[5],因为即使很快转动旋钮的情况下,每次脉冲高电平宽度一般都有十几到几十毫秒。在设计时可用1个字的位向量pre_knob和cur_knob分别保存最近的两次扫描结果,每位对应一个旋钮。低电平时相应位置1,高电平置0,用下降沿判断(即10时)认为对应位的旋钮有转动。
2.3 旋钮转动量的计算
旋钮转动量的计算方法也是本文讨论的一个重点。旋钮转动的时候,可以转动一个停顿点就发一次,但会增加通信量和主机的处理负担,而且单片机的任务非常单一,即检测前面板的动作,资源利用也不多,因此可以用单片机计算出旋钮转动量后一起发送给主机。
方法是:给每个旋钮配置1个字节的发送缓冲保存转动量。每当旋钮转动一个停顿点,单片机就检测发送缓冲是否为空,不为空则将缓冲中的转动量加1,若为空则发送旋钮编号给主机,等待主机响应,此时旋钮继续转动,转动量不断增加,主机响应后再将发送缓冲里的转动量发送给主机,发送完成后清空缓冲。