在DUT 到量测仪器之间的路径上(图1),有许多个点都会出现这些因素的取捨时机,本文建议了一个考量这些取捨因素的架构,并且提供六大秘诀,教您如何克服RF 信号路径上常会碰到的问题。
图1:在所有的测试系统架构下,都有很多的机会可以在效能、速度与稳定之间求取最佳的平衡,以控管量测的正确性。 |
秘诀一:排定效能、速度与稳定的优先顺序
为了让全部六大秘诀有论述的依据,有必要先釐清我们对效能、速度及稳定的定义。在大部分的情况下,只有其中一个或两个因素会成为首要的考量条件,主导您的测试需求与设备的选择。无论如何,仔细地审视效能、速度与稳定之间的相互影响与取捨关系(如表1 到表3 的摘要所列),将可协助您掌控特有的需求状况。
-
基本的定义
在RF 和微波测试设备中,安捷伦科技对“效能”的定义主要指的是仪器的准确度、量测范围和频宽。仪器的准确度包括明订的振幅和频率量测绝对准确度;量测范围指的是动态范围、失真、噪音位准和相位噪音,这些属性会影响信号位准量测的精确度;而频宽则是指可以处理和分析的频率宽度或资料速率。速度测试系统的速度或Throughput 会取决于所使用的硬件、输入/ 输出(I/O)介面和软件,我们的重点将放在硬件和四项会影响速度的因素上:量测设定时间、量测执行时间、资料处理时间、以及资料传输时间。在RF 和微波的频率,设定时间中非常重要的一环就是DUT 或测试系统在每次变更(例如切换器的开或闭、功率位准改变)之后, 所需的稳定时间(settling time)。
稳定一致性对任何测试系统来说,每一次的测试以及每天的测试都能产生一致的结果是非常重要的。然而,稳定佳并不代表精确度也高,因为精确度会取决于个别仪器的效能,而稳定指的是无论明订的准确度为何,所量测到的结果都是一致的。就每一部仪器而言,稳定可能会因某些量测或模式而异,因此查看产品的规格或询问制造商是很重要的。在某些程度内,透过更多次的平均,或修改演算法以准确地逼近符合标准量测方法所得到的结果,将可以提高稳定。将量测设定(如中心频率、频距和衰减位准)的改变次数减到最少,可以达到最佳的稳定一致性。 -
三者的关系概述
DUT 的测试要求和商业上的考量可以协助您评估效能、速度与稳定之间的相对重要性,一旦您确立了首要的考量条件及其要求的高低程度后,就比较容易理出彼此的关系及其对系统的影响。表1、表2 和表3 分别就两种状况:首要考量条件的要求为高或低,摘要整理了相互间的影响关系。
表1:以效能为首要的考量条件时,最重要的相互影响因素是效能和速度。 |
表2:以速度为首要的考量条件时,最重要的关系在于速度和稳定。 |
表3:以稳定一致性为首要的考量条件时,最重要的关系也是稳定一致性和速度。 |
- 稳定与效能
在表1 和表3 中,稳定与效能之间有一个重要的第二层关系,这是由量测不确定度所串起的一种间接关系。面对不确定度时,有些系统开发人员会设计一个“误差量”(error budget),其大小取决于测试要求与系统不确定度之间的差距。影响不确定度的两大主要因素是绝对准确度(仪器的效能)和量测一致性(稳定)。如果系统中的仪器具有很高的绝对准确度,那么误差量中就有较大的空间可以容忍较低的稳定。如果仪器可以提供一致的结果,那么误差量中也会有较大的空间可以容忍较低的绝对准确度。 - 多项要求皆“高”
若要满足“高速与高稳定”或“高效能与高速”这类多重的要求,可能就需要使用复杂精密的仪器,其价格相较于能力较差的设备自然会稍微高一些。不过,许多高性能的仪器中可能会内建硬件加速器,可以加快一些耗时的作业,如平均计算和校准。有些机种也可能包含多种演算法,可以计算诸如相邻频道功率(ACP)等参数。如果全部三项要求皆“高”,就必须仔细检查系统的每一个部份-测试设备、切换子系统、缆线、接头等。最佳的解决方案很可能价格也不低,但可以提供一些额外的功能和优点。
秘诀二:审视DUT 的本质和特性
的自动化测试系统可以执行三项基本的任务:提供信号源、进行量测、以及进行切换,至于该使用哪一种信号产生器、功率錶、频谱分析仪、网路分析仪、切换矩阵(switch matrix)和缆线,则取决于DUT 的电性和机构属性。在RF 和微波的频率,有一些基本的特性需要特别留意。
- 电性参数
DUT 的基本性质是主要的考量:它是被动和线性的,或是主动和非线性的?被动的线性元件较容易处理,因为它们在整个工作频宽范围内所有允许的输入功率位准下,增益和相位偏移量一般都是固定的。相反地,主动元件就需要格外谨慎,因为它们通常具有非线性的工作区域,对输入功率相当敏感,可能会在不同的位准产生不同的结果。如此一来,可能就需要在测试系统中加入放大器或衰减器,以精确地控制功率位准,而且也许还要加入耦合器,将输入到DUT 的功率位准分一些出来并确认是否正确。这些额外加入的东西千万不能轻忽:在高频下,每一个系统组成要件都具有复数的阻抗值(伴随有S参数),而且每多一项连接就有可能与DUT 产生不必要的相互影响。 -
避免不匹配:任何连接线的阻抗不匹配
都可能造成注入损耗(insertion loss),而损耗掉信号源或量测信号的一些功率。众所周知,在高频下功率是很昂贵的,而且如果必须在很广的频率范围提供所需功率的话,还会变得更加昂贵。秘诀:使用精确度高的缆线和配件,且要使用向量式网路分析仪(VNA)充分量测缆线和配件的实际阻抗,特别是如果DUT 是主动元件的话。 -
将VSWR 降到最低
切换矩阵加上其接头、内部和外部缆线、甚至是任何RF 缆线的弯曲半径等组合,可能因DUT 的电压驻波而产生误差。秘诀:若要将这项误差减到最小,可以使用电压驻波比(VSWR)规格为1:2:1 或更佳的切换矩阵。 -
增加隔离度
如果您的测试需要同时量测高位准和低位准的信号,则切换矩阵的隔离度规格将会影响量测的正确性。秘诀:如果通过DUT 的路径有很多条,可以使用信号产生器和频谱分析仪,尽可能地量测出隔离度的特性。如果无法做到这一点,则系统在配置和设定时,应该将高位准和低位准的信号绕接到不相邻的路径上,或绕经不同的切换器。 - 机构属性
另外一组需要考量的细节是信号和电源(交流电或直流电)接头的数量和类型,这会影响所需的切换矩阵大小,以及系统接线的复杂度等因素。秘诀:使用埠数足够的切换矩阵,一次就可以接好系统到DUT 的所有连接,这样一来,就可以将等待信号稳定所需的延迟时间缩到最短,并且将功率位准突然改变而损坏切换矩阵或DUT 的机率降到最低。