成熟的虚拟仪器技术由三大部分组成:高效的软件编程环境、模块化仪器和一个支持模块化I/O集成的开放的硬件构架。
在这个技术日新月异的时代,虚拟仪器技术为用户带来的灵活性和可扩展性已经不再是一种奢求,而是必需。Clayton Christensen在《Innovators Dilemma》一书中是这样描述这一现象的:当一个市场领导者面临着同行/竞争对手推出更新、更先进的技术之后,他们往往就要丧失原先的领导地位了,因此技术领导者(即革新者)们也面临了新的技术革新所带来的困境。一方面,技术革新为公司赢得市场立足点,以及扩大市场份额的机会。但另一方面,随着市场的成熟,这个加速公司成长的竞争优势却难以长久维持,因为竞争会使产品逐渐商品化、大众化,原先该产品上与众不同的地方会逐渐变得普通,需要有新的技术革新带来新的产品亮点。于是革新反而就开始成为一种责任,迫使公司为了保持在市场上既有的领导地位,持续不断地进行技术革新,并且要以最短的时间将革新成果推向市场。
随着产品开发时间不断缩短,带给仪器供应商的压力也越大。厂商定义的解决方案能否满足用户不断提出的新要求、新标准和新特性?
我们看到现在产品的体积越来越小,同时需要集成的特性越来越多,这就要求有更多的仪器进行测量,从而确保产品质量,因此,不同仪器I/O之间的同步变得至关重要,测量空间的因素也需要考虑在内。面对这样的情况,越来越多的工程师开始转向虚拟仪器技术这一解决方案,不单是快速发展的消费电子、通讯等市场,甚至是一贯保守的美国国防部也加入了这一行列,他们使用“综合性仪器(Synthetic Instrument)”这样相似的概念名词来预示着大规模的行业应用。在向国会提交的报告中,国防部指出:“在开发综合性仪器时,采用新近的商业化技术实时地配置仪器,从而实现各种测试功能……单个综合性仪器可以代替多个独立仪器的功能,从而减小了后勤装备的体积并解决了设备过时的问题。”[摘自2002年2月,国防部技术改进办公室向国会提交的报告]。
虚拟仪器技术,以及其他实质相似的概念,为增加灵活性、降低投资成本、提高测试系统使用寿命,同时确保可靠性等要求,提供了一个理想的解决方案。