——————————————割割———————————————————
1,对加速度和角速度求得的角度用互补滤波,得到的角度会更准确,即用加速度求得的角度来纠正陀螺仪积分的偏差。当然也可以用卡尔曼滤波,但是卡尔曼滤波系数比较难搞定,没有深入研究。
2,看的飞控代码还不多,目前感觉四元数做姿态解算,一般是用一阶毕卡解法来解四元数微分方程。龙格库塔法也能解四元数微分方程,但是还不了解,没用过。
——————————————割割———————————————————
再搞个直白一点的例子:
机体好似一条船,地理就是那地图,姿态就是航向(船头在地图上的方位),重力和地磁是地图上的灯塔,陀螺/积分公式是舵手,加计和电子罗盘是瞭望手。
舵手负责估计和把稳航向,他相信自己,本来船向北开的,就一定会一直往北开,觉得转了90度弯,那就会往东开。
当然如果舵手很牛逼,也许能估计很准确,维持很长时间。不过只信任舵手,肯定会迷路,所以一般都有地图和瞭望手来观察误差。
瞭望手根据地图灯塔方位和船的当前航向,算出灯塔理论上应该在船的X方位。然而看到实际灯塔在船的Y方位,那肯定船的当前航向有偏差了,偏差就是ERR=X-Y。
舵手收到瞭望手给的ERR报告,觉得可靠,那就听个90%*ERR,觉得天气不好、地图误差大,那就听个10%*ERR,根据这个来纠正估算航向。。
上次看到一个帖子,说的也是德国人的算法,说效果很不错,也很神奇,只可惜没有相关代码。有机会还是找找来看看,肯定有收获。
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
以下是从阿莫论坛转来的,很干的干货啊,呵呵
这就是mahony滤波算法吧!有互补滤波的意思,效果还不错!
虽然对阿莫这个论坛有自己的看法,但是看看一些精华帖子还是好的
------------------------------------------------------
来点干货,注意以下的欧拉角都是这样的顺序:先航向-再俯仰-然后横滚
公式截图来自:袁信、郑锷的《捷联式惯性导航原理》,邓正隆的《惯性技术》。
--------------------------------------------------
根据加计计算初始欧拉角
这个无论欧拉角算法还是四元数算法还是方向余弦矩阵都需要,因为加计和电子罗盘给出欧拉角的描述方式比较方便。
imu.euler.x = atan2(imu.accel.y, imu.accel.z);
imu.euler.y = -asin(imu.accel.x / ACCEL_1G);
ACCEL_1G 为9.81米/秒^2,accel.xyz的都为这个单位,算出来的euler.xyz单位是弧度
航向imu.euler.z可以用电子罗盘计算
--------------------------------------------------
欧拉角微分方程
如果用欧拉角算法,那么这个公式就够了,不需要来回转换。
矩阵上到下三个角度(希腊字母)是roll pitch和yaw,公式最左边的上面带点的三个是本次更新后的角度,不带点的是上个更新周期算出来的角度。
Wx,y,z是roll pitch和yaw方向的三个陀螺在这个周期转动过的角度,单位为弧度,计算为间隔时间T*陀螺角速度,比如0.02秒*0.01弧度/秒=0.0002弧度.
--------------------------------------------------
以下是四元数
--------------------------------------------------
四元数初始化
q0-3为四元数四个值,用最上面公式根据加计计算出来的欧拉角来初始化
--------------------------------------------------
四元数微分方程
四元数更新算法,一阶龙库法,同样4个量(入、P1-3)也为四元数的四个值,即上面的q0-3。
Wx,y,z是三个陀螺的这个周期的角速度,比如欧拉角微分方程中的0.01弧度/秒,T为更新周期,比如上面的0.02秒。
再来一张,另外一本书上的,仔细看和上面是一样的delta角度,就是上面的角速度*周期,单位为弧度
--------------------------------------------------
四元数微分方程更新后的规范化
每个周期更新完四元数,需要对四元数做规范化处理。因为四元数本来就定义为四维单位向量。
求q0-3的平方和,再开根号算出的向量长度length。然后每个q0-3除这个length。
--------------------------------------------------
四元数转欧拉角公式
把四元数转成了方向余弦矩阵中的几个元素,再用这几个元素转成了欧拉角
先从四元数q0-3转成方向余弦矩阵:
再从方向余弦矩阵转成欧拉角
代码:
//更新方向余弦矩阵
t11=q.q0*q.q0+q.q1*q.q1-q.q2*q.q2-q.q3*q.q3;
t12=2.0*(q.q1*q.q2+q.q0*q.q3);
t13=2.0*(q.q1*q.q3-q.q0*q.q2);
t21=2.0*(q.q1*q.q2-q.q0*q.q3);
t22=q.q0*q.q0-q.q1*q.q1+q.q2*q.q2-q.q3*q.q3;
t23=2.0*(q.q2*q.q3+q.q0*q.q1);
t31=2.0*(q.q1*q.q3+q.q0*q.q2);
t32=2.0*(q.q2*q.q3-q.q0*q.q1);
t33=q.q0*q.q0-q.q1*q.q1-q.q2*q.q2+q.q3*q.q3;
//求出欧拉角
imu.euler.roll = atan2(t23,t33);
imu.euler.pitch = -asin(t13);
imu.euler.yaw = atan2(t12,t11);
if (imu.euler.yaw < 0){
imu.euler.yaw += ToRad(360);
}
----------------------------------------------------
以下代码摘自网上,很巧妙,附上注释,有四元数微分,有加计耦合。
没电子罗盘,其实耦合原理也一样。
//=====================================================================================================
// IMU.c
// S.O.H. Madgwick
// 25th September 2010
//=====================================================================================================
// Description:
//
// Quaternion implementation of the 'DCM filter' [Mayhony et al].
//
// User must define 'halfT' as the (sample period / 2), and the filter gains 'Kp' and 'Ki'.
//
// Global variables 'q0', 'q1', 'q2', 'q3' are the quaternion elements representing the estimated
// orientation. See my report for an overview of the use of quaternions in this application.
//
// User must call 'IMUupdate()' every sample period and parse calibrated gyroscope ('gx', 'gy', 'gz')
// and accelerometer ('ax', 'ay', 'ay') data. Gyroscope units are radians/second, accelerometer
// units are irrelevant as the vector is normalised.
//
//=====================================================================================================
//----------------------------------------------------------------------------------------------------
// Header files
#include "IMU.h"
#include <math.h>
//----------------------------------------------------------------------------------------------------
// Definitions
#define Kp 2.0f // proportional gain governs rate of convergence to accelerometer/magnetometer
#define Ki 0.005f // integral gain governs rate of convergence of gyroscope biases
#define halfT 0.5f // half the sample period
//---------------------------------------------------------------------------------------------------
// Variable definitions
float q0 = 1, q1 = 0, q2 = 0, q3 = 0; // quaternion elements representing the estimated orientation
float exInt = 0, eyInt = 0, ezInt = 0; // scaled integral error
//====================================================================================================
// Function
//====================================================================================================
void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az) {
float norm;
float vx, vy, vz;
float ex, ey, ez;
// normalise the measurements
norm = sqrt(ax*ax + ay*ay + az*az);
ax = ax / norm;
ay = ay / norm;
az = az / norm;
把加计的三维向量转成单位向量。
// estimated direction of gravity
vx = 2*(q1*q3 - q0*q2);
vy = 2*(q0*q1 + q2*q3);
vz = q0*q0 - q1*q1 - q2*q2 + q3*q3;
这是把四元数换算成《方向余弦矩阵》中的第三列的三个元素。
根据余弦矩阵和欧拉角的定义,地理坐标系的重力向量,转到机体坐标系,正好是这三个元素。
所以这里的vx\y\z,其实就是当前的欧拉角(即四元数)的机体坐标参照系上,换算出来的重力单位向量。
// error is sum of cross product between reference direction of field and direction measured by sensor
ex = (ay*vz - az*vy);
ey = (az*vx - ax*vz);
ez = (ax*vy - ay*vx);
axyz是机体坐标参照系上,加速度计测出来的重力向量,也就是实际测出来的重力向量。
axyz是测量得到的重力向量,vxyz是陀螺积分后的姿态来推算出的重力向量,它们都是机体坐标参照系上的重力向量。
那它们之间的误差向量,就是陀螺积分后的姿态和加计测出来的姿态之间的误差。
向量间的误差,可以用向量叉积(也叫向量外积、叉乘)来表示,exyz就是两个重力向量的叉积。
这个叉积向量仍旧是位于机体坐标系上的,而陀螺积分误差也是在机体坐标系,而且叉积的大小与陀螺积分误差成正比,正好拿来纠正陀螺。(你可以自己拿东西想象一下)由于陀螺是对机体直接积分,所以对陀螺的纠正量会直接体现在对机体坐标系的纠正。
// integral error scaled integral gain
exInt = exInt + ex*Ki;
eyInt = eyInt + ey*Ki;
ezInt = ezInt + ez*Ki;
// adjusted gyroscope measurements
gx = gx + Kp*ex + exInt;
gy = gy + Kp*ey + eyInt;
gz = gz + Kp*ez + ezInt;
用叉积误差来做PI修正陀螺零偏
// integrate quaternion rate and normalise
q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;
q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;
q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;
q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;
四元数微分方程
// normalise quaternion
norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
q0 = q0 / norm;
q1 = q1 / norm;
q2 = q2 / norm;
q3 = q3 / norm;
四元数规范化
}
//====================================================================================================
// END OF CODE
//====================================================================================================
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |
打赏帖 | |
---|---|
与电子爱好者谈读图二被打赏50分 | |
【FRDM-MCXN947评测】Core1适配运行FreeRtos被打赏50分 | |
【FRDM-MCXN947评测】双核调试被打赏50分 | |
【CPKCORRA8D1B评测】---移植CoreMark被打赏50分 | |
【CPKCORRA8D1B评测】---打开硬件定时器被打赏50分 | |
【FRDM-MCXA156评测】4、CAN loopback模式测试被打赏50分 | |
【CPKcorRA8D1评测】--搭建初始环境被打赏50分 | |
【FRDM-MCXA156评测】3、使用FlexIO模拟UART被打赏50分 | |
【FRDM-MCXA156评测】2、rt-thread MCXA156 BSP制作被打赏50分 | |
【FRDM-MCXN947评测】核间通信MUTEX被打赏50分 |