Keil C51总线外设操作问题的深入分析
阅读了《单片机与嵌入式系统应用》2005年第10期杂志《经验交流》栏目的一篇文章《Keil C51对同一端口的连续读取方法》(原文)后,笔者认为该文并未就此问题进行深入准确的分析 文章中提到的两种解决方法并不直接和简单。笔者认为这并非是Keil C51中不能处理对一个端口进行连续读写的问题,而是对Kei1 C51的使用不够熟悉和设计不够细致的问题,因此特撰写本文。
本文中对原文提到的问题,提出了三种不同于原文的解决方法。每种方法都比原文中提到的方法更直接和简单,设计也更规范。(无意批评,请原文作者见谅)
1 问题回顾和分析
原文中提到:在实际工作中遇到对同一端口反复连续读取,Keil C51编译并未达到预期的结果。原文作者对C编译出来的汇编程序进行分析发现,对同一端口的第二次读取语句并未被编译。但可惜原文作者并未分析没有被编译的原因,而是匆忙地采用一些不太规范的方法试验出了两种解决办法。
对此问题,翻阅Keil C51的手册很容易发现:KeilC51的编译器有一个优化设置,不同的优化设置,会产生不同的编译结果。一般情况缺省编译优化设置被设定为8级优化,实际最高可设定为9级优化:
1. Dead code elimination。
2.Data overlaying。
3.Peephole optimization。
4.Register variables。
5.Common subexpression elimination。
6.Loop rotation。
7.Extended Index Access Optimizing。
8.Reuse Common Entry Code。
9.Common Block Subroutines。
而以上的问题,正是由于Keil C51编译优化产生的。因为在原文程序中将外设地址直接按如下定义:
unsigned char xdata MAX197 _at_ 0x8000
采用_at_将变量MAX197定义到外部扩展RAM 指定地址0x8000。因此,Keil C51优化编译理所当然认为重复读第二次是没有用的,直接用第一次读取的结果就可以了,因此编译器跳过了第二条读取语句。至此,问题就一目了然了。
2 解决方法
由以上分析很容易就能提出很好的解决办法。
2.1 最简单最直接的办法
程序一点都不用修改,将Keil C51的编译优化选择设置为0(不优化)就可以了。选择project窗口的Target,然后打开“Options for Target”设置对话框,选择“C51”选项卡,将“Code Optimiztaion”中的“Level”选择为“0:Costant folding”。再次编译后,大家会发现编译结果为:
CLR MAXHBEN
MOV DPTR,#MAX197
MOVX A,@DPTR
MOV R7,A
MOV down8,R7
SETB MAXHBEN
MOV DPTR,#MAX197
MOVX A,@DPTR
MOV R7,A
MOV up4,R7
两次读取操作都被编译出来了。
2.2 最好的方法
告诉Keil C51,这个地址不是一般的扩展RAM,而是连接的设备,具有“挥发”特性,每次读取都是有意义的。可以修改变量定义,增加“volatile”关键字说明其特征:
unsigned char volatile xdata MAX197 _at_ 0x8000;
也可以在程序中包含系统头文件;“#include<absacc.h>”,然后在程序中修改变量,定义为直接地址:
#define MAX197 XBYTE[0x8000]
这样,Keil C51的设置仍然可以保留高级优化,且编译结果中,同样两次读取并不会被优化跳过。
2 3 硬件解决方法
原文中将MAX197的数据直接连接到数据总线,而对地址总线并未使用,采用一根端口线选择操作高低字节。很简单的修改方法就是使用一根地址线选择操作高低字节即可。比如:将P2.0(A8)连接到原来P1.0连接的HBEN脚(MAX197的5脚).在程序中分别定义高低字节的操作地址:
unsigned char volatile xdata MAX197_L _at_ 0x8000;
unsigned char volatile xdata MAX197_H _at_ 0x8100;
将原来的程序:
MAXHBEN =0;
down8=MAX197;//读取低8位
MAXHBEN =1;
up4=MAX197;//读取高4位
改为以下两句即可
down8= MAX197_L;//读取低8位
up4=MAX197_H;//读取高4位
3 小结
Keil C51经过长期考验和改进以及大量开发人员的实际使用,已经克服了绝大多数的问题,并且其编译效率也非常高。对于一般的使用.很难再发现什么问题。笔者曾经粗略研究过一下Keil C51优化编洋的结果.非常佩服Keil C51设计者的智慧,一些C程序编译产生的汇编代码.甚至比一般程序员直接用汇编编写的代码还要优秀和简练 通过研读Kell C51编译产生的汇编代码.对提高汇编语言编写程序的水平都是很有帮助的。
由本文中的问题可以看出:在设计中遇到问题时.一定不要被表面现象蒙蔽,不要急于解决,应该认真分析,找出问题的原因.这样才能从根本上彻底解决问题。
附表:Keil C51中的优化级别及优化作用级别说明0常数合并:编译器预先计算结果,尽可能用常数代替表达式。包括运行地址计算。
优化简单访问:编译器优化访问8051系统的内部数据和位地址。
跳转优化:编译器总是扩展跳转到最终目标,多级跳转指令被删除。1死代码删除:没用的代码段被删除。
拒绝跳转:严密的检查条件跳转,以确定是否可以倒置测试逻辑来改进或删除。2数据覆盖:适合静态覆盖的数据和位段被确定,并内部标识。BL51连接/定位器可以通过全局数据流分析,选择可被覆盖的段。3窥孔优化:清除多余的MOV指令。这包括不必要的从存储区加载和常数加载操作。当存储空间或执行时间可节省时,用简单操作代替复杂操作。4寄存器变量:如有可能,自动变量和函数参数分配到寄存器上。为这些变量保留的存储区就省略了。
优化扩展访问:IDATA、XDATA、PDATA和CODE的变量直接包含在操作中。在多数时间没必要使用中间寄存器。
局部公共子表达式删除:如果用一个表达式重复进行相同的计算,则保存第一次计算结果,后面有可能就用这结果。多余的计算就被删除。
Case/Switch优化:包含SWITCH和CASE的代码优化为跳转表或跳转队列。5全局公共子表达式删除:一个函数内相同的子表达式有可能就只计算一次。中间结果保存在寄存器中,在一个新的计算中使用。
简单循环优化:用一个常数填充存储区的循环程序被修改和优化。6循环优化:如果结果程序代码更快和有效则程序对循环进行优化。7扩展索引访问优化:适当时对寄存器变量用DPTR。对指针和数组访问进行执行速度和代码大小优化。8公共尾部合并:当一个函数有多个调用,一些设置代码可以复用,因此减少程序大小。9公共块子程序:检测循环指令序列,并转换成子程序。Cx51甚至重排代码以得到更大的循环序列。