ICD2作为烧写器时容易出现的问题及解决方法
尽管MPLAG ICD2与目标板的互连非常简单,但是一不小心就会出现问题,基本上每一个PIC的入门者都会碰到类似的问题。下面就一些常见问题作简要叙述。
如图l所示,在VPP与VDD之间通常要串接一个上拉电阻(通常约为lOkΩ),这样VPP线可置为低电平来手动复位PICmicro单片机。但是对一般设计者来说,都是采用上电自动复位。如果在这里采用集成器件DMP809,那么就会导致连接不上,程序没有办法烧入。
对于PGC、PGD两根线,由于在ICD2内部已经进行了上拉,所以在外围设计中,不要冉进行上拉,否则会造成分压。对于PGC、PGD和VPP三根线,不要对地接电容.因为电容会阻碍在数据和时钟线上电平的快速转换,从而影响ICD2与目标板的连接。同样对于PGC、PGD,由于数据或时钟都是双向传输的,这时如果在中间串一个二极管,则会影响ICD2与单片机的双向通信。
但是,对PGC和PGD来说,在单片机上同时复用为普通I/O口,而有些使用上必须要接对地电容或者是串接二极管。对于这种情况,唯一的处理方式就是在烧写时从芯片的PGC和PGD端口直接跳线到程序烧写口。
A/D转换通道切换问题
笔者所设计的电动机保护器需要进行很多A/D转换,比如三相电流转换、零序电流转换以及各种定位器等。但是笔者所采用的PIC16F716单片机只有5路A/D转换通道,因此附加了一个多位选择开关对一个A/D通道进行复用。而在调试中发现这样一个问题,就是A/D转换值不准确,甚至有点乱,但从程序流程以及代码角度均查不出任何问题。后查明PICl6F716单片机进行A/D转换通道切换时,需要一定的延时,延时时间是毫秒级。解决办法是:在通道问切换时,当第一个通道转换完成后,先转到另一个通道;然后延时1ms左右,再进行A/D转换。而对同一个通道信号切换时,要在第一个信号转换完成后,禁止信号输入,延时1ms左右;然后输人信号,再进行A/D转换。
这种做法比较麻烦,也很占用时间,并且从调试结果来看,问题并没有解决。在反复进行调试中,最后得到的优化解决办法是:对于通道间转换以及同一通道信号转换,要对每一个信号至少进行两次A/D转换;第一次的转换结果,舍弃不予处理,只取第二次A/D转换的结果。从调试结果来看,很好地解决了这一问题。
指令的大小写问题
编写PIC单片机的源程序,除了源程序的开始处需要严格的列表指令外,还须注意源程序中字母符号的大小写规则,否则在PC机上汇编程序时不会成功。在源程序中都会使用伪指令INCLUDE。这条指令将列表中指定的单片机文件(在MPLAB中)读入源程序作为源程序的一部分,所以凡是MPLAB中有关该单片机已有的寄存器在源程序中无需再用赋值指令(EQU)赋值,这就使所建立的源程序大为简化。
此外,由于有了伪指令INCLUDE,所以根据MPLAB软件中的格式,在源程序中的操作数凡是涉及MPLAB已规定的寄存器名称的,其字母一律只能大写,不能小写。其余操作码、符号字母可任意大小写,但0x中的x应小写。否则汇编不会成功。鉴于上述原因,为了书写方便,在使用MPLAB软件时,PIC单片机的源程序均用大写字母为宜(0x例外)。
3.2 振荡器的配置以及时序的计算
PIC系列单片机可以工作于以下4种不同的振荡器方式:LP(低功耗晶体振荡器)、XT(晶体谐振器)、HS(高速晶体谐振器)和RC(阻容振荡器)。用户可以根据其系统设计的需要,通过对配置位(FOSC1和F0SC2)编程,选择其中一种工作模式。
而一旦振荡器配置完成,那么根据用户的配置,可以轻松地计算出程序运行的时间以及A/D转换所占用的时间,这样就会很轻松地安排好单片机的时序。例如,如果采用4 MHz的HS振荡模式,那么单片机的时钟频率为FOSC/4,也就是说执行一条指令需要1μs;对于需要两个指令周期的指令,需要2μs。而对于A/D转换,如果A/D转换时钟位选择为FOSC/8,那么A/D转换模块转换一个位的时间Tad就为2μs。对一个8位的转换来说,需要的时间为9.5Tad,也就是完成一次A/D转换的时间为19μs。这样只需要查看源程序的行数并作简要分析,就可以计算出程序运行的时间。
3.3 存储体的选择
PIC单片机的数据存储器通常分为两个存储体,即存储体O(Bank0)和存储体1(Bankl)。每个存储体都是由专用寄存器和通用寄存器两部分组成的。两个存储体中的一毡寄存器单元实际上是同一个寄存器单元,却又具有不同的地址。
不同型号的PIC单片机,其数据存储器的组成(即功能)是不完全相同的,所以设计人员一旦选用了某个PIC单片机的型号后,就要查找该单片机的数据存储器资料,以便编程使用。
笔者所采用的PICl6F716单片机的存储区,是通过STATUS寄存器的RPl位和RP0位来选择的。当配置为00时,表示选择存储区0;当配置为01时,表示选择存储区1。因为存储区的改变只须改变RP0位,所以通常在程序编写时,只改变RP0位来选择存储区。但是这样容易造成程序的混乱,因此,笔者建议在每次更换存储区时,要分别对RPO和RPl进行置位。在程序初始化时,最好将寄存器的初始化分为两部分:第一部分为存储区O;第二部分为存储区1。然后将每个需要初始化的寄存器分别在对应的存储区进行初始化即可。
3.4 GOTO和CALL指令的不同使用
在PIC的汇编程序中,CALL与GOT0指令使用的场台不同。CALL是用来调用子程序的,在调用完子程序后返回到调用前的程序;而GOTO是无条件转移,即由此状态进入另外一个状态而不需要返回。
为了使程序更加具有可读性,使流程更加清晰、合理,通常程序都采用模块化程序设计,即将程序按照功能分成不同的子程序,而主程序则相当简洁,只须采用CALL指令对子程序进行调用。
由于PIC单片机的堆栈有限,在程序中不能无止境地使用GOTO指令,否则会使堆栈溢出,程序无法正常运行。但是在有些时候,例如当程序出现分支时,则不得不使用GOTO指令。对于PICl6F7x系列单片机,程序出现分支时只能通过STATUS寄存器的Z位或C位进行判断。这时在两种情况的前一种情况下,必须使用GOTO指令进行转移;否则在执行完第一种情况后,紧接着又执行第二种情况。程序如下:
BTFSS STATUS,Z
GOTO A
GOTO B
在跳转到A时,必须使用GOTO指令;否则执行完这条语句以后,紧接着执行GOTO B。这样无论Z为何值,程序都将跳转到B。而对于GOT0 B,则可以不必使用GOTO指令。
在上面这种情况下,由于GOTO只在子程序内部进行跳转,小程序内部循环占用堆栈的级数不多,因此使用GOTO指令是可行的。但是在大的程序中使用GOTO指令,将有可能无法返回到调用前的下一条指令。
因此,笔者建议,在使用汇编语言进行程序设计时,应该将程序分解成一级级的子程序;然后在程序之间进行调用,尽量将GOTO指令跳转的范围缩小。
3.5 对芯片的重复烧写
对没有硬件仿真器的设计者来说,总是选用带有EPROM的芯片来调试程序,通过反复的修改来观看运行结果,以便对程序进行调试。每更改一次程序.都是将原来的内容先擦除,再编程,浪费了相当多的时间,又缩短了芯片的使用寿命。如果后一次编程较前一次,仅是对应的机器码字节的相同位由1变为0,那么就可在前一次编程芯片上再次写入数据,而不必擦除原片内容。
在程序调试过程中,经常遇到常数的调整。如果常数的改变能保证对应位由1变0,则都可在原片内容的基础上继续编程。另外,由于指令NOP对应的机器码为00,调试过程中指令的删除,可先用NOP指令替代,编译后也可在原片内容上继续编程。