在我们国内进行的六类模块PCB设计中,主要以线路对角补偿理论做依据,进行大量的试制工作,也同样可以达到预期的效果。下述理论作为参考。
模块与插头引起的信号外漏现象
信号在链路上,会发生相互间的信号干涉现象。为了防止信号干涉现象,在平衡链路中导体进行扭绕,达到平衡传输的目的。扭绕结构虽然会造成信号间的相位变化,同时,增大了线路上的信号衰减。这个结构称之为非屏蔽结构(UTP)。4对平衡双绞线中每对线的绞距不同,就是为了达到这个目的。
线缆尾端使用模块化的连接件,即信息模块,形成连接件和接插件之间的相连,相互连接区内形成导体之间进行的平衡结构,即六类系统的永久链路。在永久链路内产生了在平衡线路所发生的信号干扰现象,即串扰,解决串扰问题,是进行高速通信用连接件制造的核心技术。
在接触端子之间产生接触损失,也因此所产生衰减、反射损失等现象。这种损失在高速信号传输时是产生障碍和故障的问题点,通过解决这些问题,是进行高速通信用连接件制造的核心技术。
模块与插头产生信号外漏的解释
在模块与插头中的连接线路中,插头内的每对连接端子也是平衡线路。
平衡线路中导体产生信号外漏及阻抗的损耗。
阻碍通信的最大因素是信号外漏。
外漏问题的解决方法可通过研究E场和H场,或从研究反向衰减的方法中寻找解决方案,这是高速通信用连接件制造的核心技术。
E场和H场
平衡线路上所发生的信号干扰,即电磁场干扰,可通过E场和H场的分布进行描述。
电子通信线路测试的主要参数是扫频下进行的相关测量。在这个频率信号上附加语音或数据包进行传输,传输速度要求越高, 频率越快。
信号外漏的解决方法
解释产生问题的插座信号外漏现象,最基本的方法是根据电感和电容所发生的信号外漏仿真图,在信号集中区域收集信号并进行返送。以下图表是将IDC端子处的外漏信号以反方向耦合方式解决的仿真图。
IDC端子处所接收的量如数返还,从而解决外漏的问题。
设计中,耦合电容的设计是关键参数,与其耦合线路的长度、线间距离、宽度、补偿线路布置等有关。
考虑到六类系统采用4对线同时传输信号,必然对其产生综合远端串绕和综合远端串绕,考虑到所有的影响,进行计算机仿真,进行补偿线路设计。下图是设计超六类线路板时进行的计算机模拟以及进行的线路设计过程。