本文作者在 Github 上建立了一个代码速查表,对机器学习初学者来说是不可多得的一个资源。
对于初学者来讲,入门机器学习和深度学习非常困难;同时深度学习库也难以理解。通过收集多方资源,我在 Github 上创建了一个速查表库,希望能对你有所帮助。欢迎访问这个库,并完善它(如果你也有速查表)。
1.Keras
Keras 是一个非常强大且容易上手的深度学习库;当 Keras 接入 Theano 和 TensorFlow 时,后两者可提供高水平的神经网络 API 以开发和评估深度学习模型。该速查表可用于 Python 数据科学和机器学习。
2. Numpy
Numpy 库是 Python 中科学性计算的核心库,它提供高性能、多维度的数组对象,以及对这些数组进行运算的工具。该速查表可用于 Python 数据科学和机器学习。
3. Pandas
这张 Pandas 速查表主要用于数据整理(data wrangling)。
Pandas 库构建在 NumPy 上,并为 Python 编程语言提供易于上手的数据结构和数据分析工具。该速查表可用于 Python 数据科学和机器学习。
4. SciPy
SciPy 库是科学性计算的核心包之一,科学性计算可提供数学算法和构建在 Python 的 NumPy 扩展上的便捷函数 (Convenience Functions) ;该表中还包括线性代数的部分。该速查表可用于 Python 数据科学和机器学习。
5. Matplotlib
Matplotlib 是一个 Python 2D 绘图库,它在平台上以多种硬拷贝格式和交互环境生成发表品质的图。该速查表用于 Python 数据科学。
6. Scikit-learn
Scikit-learn 是一个开源 Python 库,通过统一接口实现一系列的机器学习、预处理、交叉验证和视觉化算法。该速查表可用于 Python 数据科学和机器学习。
7. Neural Networks Zoo(神经网络大全)
该速查表几乎涵盖了所有类型的神经网络。
8. ggplot2
ggplot2 基于图形语法,其思想是你可以利用相同的几个组件构建所有的图形:一个数据集、一个几何集(表征数据点的视觉化标记)和一个协作系统。该速查表用于数据可视化。
有奖活动 | |
---|---|
【有奖活动——B站互动赢积分】活动开启啦! | |
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |