基本概念
块统计的关键概念是:任何尺寸的正方形印刷电路板走线(厚度确定)的电阻值都与其它尺寸的方块相同。正方块的电阻值只取决于导电材料的电阻率及其厚度。这一概念可适用于任何类型的导电材料。表1给出了一些常见的半导体材料以及它们的体电阻率。对印刷电路板而言,最重要的材料就是铜,它是大多数电路板的制造原料(注意:铝用于集成电路片芯的金属化,本文原理同样适用于铝)。我们先从图1中的铜方块说起。该铜块的长度为L,宽度也为L(因为是正方形),厚度为t,电流通过的铜箔区截面积为A。该铜块的电阻可简单表示为R=ρL/A,其中,ρ是铜的电阻率(这是材料的固有特性,在25℃时为0.67μΩ/in.)。但注意,截面A是长度L与厚度t的乘积(A=Lt)。分母中的L与分子中的L相互消去,只留下R=ρ/t。因此,铜块的电阻与方块的尺寸无关,它只取决于材料的电阻率与厚度。如果我们知道任何尺寸铜方块的电阻值,并可将需要估算的整条走线分解成多个方块,就可加算(统计)方块数量,从而得出走线的总电阻。实现要实现这一技术,我们只需要一个表,表中给出了印刷电路板走线上一个方块的电阻值与铜箔厚度之间的函数关系。铜箔厚度一般用铜箔重量来指定。例如,1oz.铜指的是每平方英尺重量为1oz.。表2给出了四种最常用铜箔的重量以及它们在25℃和100℃时的电阻率。请注意,由于材料具有正温度系数,铜电阻值会随温度的升高而增加。打个比方,我们现在知道一块0.5oz.重的方形铜箔的电阻大约为1mΩ,这个值与方块的尺寸无关。如果我们能把需要测算的印刷电路板走线分解为多个虚拟的方块,然后把这些方块加总起来,就得到了走线的电阻。
一个简单的例子
我们举一个简单的例子。图2是一条长方形的铜走线,在25℃时其重量约为0.5oz.,走线宽度为1英寸,长度为12英寸。我们可以将走线分解成一系列方块,每个方块边长都是1英寸。这样,总共就有12个方块。按照表2,每个0.5oz.重的铜箔方块的电阻为1mΩ,现在共有12个方块,因此走线的总电阻为12mΩ。
一个更复杂的例子
总结如下
●六个为1的全正方形=6个等效方块;两个为0.14的连接器方块=0.28个等效方块;三个为0.56的角方块=1.68个等效方块●总等效方块数=7.96个等效方块●电阻(A到B)=7.96个方块的电阻,因每方块为0.5mΩ,于是总电阻=3.98mΩ这一技术可以方便地应用至复杂的几何形状。一旦知道了某根走线的电阻值,想算其它量(如电压降或功耗等)就很简单了。过孔怎么算?
印刷电路板通常都不限于单层,而是以不同层的方式堆叠起来。过孔用于不同层之间的走线连接。每个过孔的电阻有限,在走线总电阻计算时必须将过孔的电阻考虑在内。一般而言,当过孔连接两根走线(或平面)时,它就构成了一个串联电阻元件。经常采用多个并联过孔的方法,以降低有效电阻。过孔电阻的计算基于图7所示的简化过孔几何形状。沿着过孔长度(L)方向的电流(如箭头所指)穿过一个截面积区域(A)。厚度(t)取决于过孔内壁电镀的铜层厚度。经过一些简单的代数变换,过孔电阻可表示为R=ρL/[π(Dt-t2)],其中,ρ是镀铜的电阻率(25℃下为2.36μΩ/in.)。注意,镀铜的电阻率远高于纯铜的电阻率。我们假设,过孔中镀层的厚度t一般为1mil,它与电路板的铜箔重量无关。对于一个10层板,层厚为3.5mil,铜重量为2oz.时,L大约为63mil。基于上述假设,表3给出了常见过孔尺寸及其电阻。我们可以针对自身特殊的板厚,调整这些数值的高低。另外,网上也有许多免费易用的过孔计算程序。以上就是一种估算印刷电路板走线或平面直流电阻的简单方法。复杂的几何形状可以分解成多个不同尺寸的铜方块,以近似于整个铜箔区。一旦确定了铜箔的重量,则任何尺寸方块的电阻值就都是已知量了。这样,估算过程就简化为单纯的铜方块数量统计。