现在常被提及的数字化工厂只是“智能制造”的一个组成部分。在智能制造之下,传统的制造流程将被重组,其最终目的是要实现产品的智能化。其中个性化的客户需求与设计,供应商和制造商之间的信息接入与共享,售后服务的快速响应等环节与数字化工厂一起,成为智能制造非常关键的组成部分。
数字化工厂不仅可以覆盖从研发到售后的各个业务环节,也可以拓展到横向的供应商管理领域 。
领先的工业企业已经在数字化工厂的建设和发展方面迈出了坚实的步伐,在提升生产效率的同时,能够迅速可靠地生产出更多定制化、高质量的产品服务于市场。对于许多没有打算建设数字化工厂的企业而言,缺乏一套数字化的愿景和企业文化是让它们裹足不前的最大阻碍。在我们看来,这正是数字化工厂先行者们不可获取的一大要素。 数字化愿景不仅只是考虑各项技术,而且还定义了这些技术如何在整个产品生命周期和企业生态圈中相互配合。阻碍企业制定数字化工厂计划的其他因素还包括机会不定、经济效益不明、投资代价不菲。综合考虑这些因素,企业所需要的不仅仅是一套清晰的愿景,更需要一张切实可行的数字化路线图。
制定一套连贯的战略绝对是重中之重。数字化工厂涉及不同技术的采用,许多技术很容易临时仓促上马。对于各项技术如何匹配整体战略和运营目标,如何与其他现有技术配合,企业需要有明确的想法,数字化愿景也应该涵盖整个组织,让数字化工厂发挥1+1>2 的作用。制定数字化工厂战略前,企业需要认识到自身目前的成熟度,确保人才和技术得到同等的重视,聚焦能带来价值最大化的项目。最后,需要组建起一支由高层、中层以及车间工人组成的支持者队伍,共同推进战略的落地。
设立试点项目
数字化的经济效益有时并不容易量化,而且在初始阶段,团队只能提供非常有限的技术概念和演示,因此可能导致难以争取到资金和利益相关方的认可。 解决这些问题的手段就是试点。通过试点,企业能发现最适合自身的方式,将速赢的成效展现给整个组织并获得它们的认可,进而争取到资金用于大规模的推广。由于数字化工厂可能会给整个劳动力带来深远的变革,所以需要让工人加入到试点工作中。 在一两处生产基地纵向整合从数字化工程设计到以实时数据为支撑的生产规划,是一种可行的试点方案。在主要的生产设备上安装传感器和执行装置,或者使用数据分析来探索预测性维护方案,也能取得初步的成效。还可以在特定的工厂中实现特定产品线的数字化,将其作为不断学习和优化的契机。当然,企业还可以考虑与初创企业、高校或行业组织等外部的数字化领先者合作,加快数字化创新的步伐。
确定所需的能力
生产环节中什么最重要?更完善、自动化程度更高的物流?为工人提供及时、定制化的信息?传感器集成网络?我们认为,从能力的角度出发考虑这个问题能带来更大的价值。数字化工厂的目标并不是实施最酷炫的新装置,而是达到提升效率、改善质量或增强业务本身等特定的目标。应该根据试点中汲取的经验,从组织、人才、流程和技术四个战略的维度,结合企业的生产战略和整体业务目标,详细勾勒出数字化工厂所聚焦的能力以及工厂体系的架构。
成为数据分析和互联方面的领先者
流程及质量改善、资源管理、预防性维护,在数字化工厂里,这些解决方案几乎总是与互联息息相关。传感器协助收集数据,在信息层进行分析,然后传回联网的物流设施和生产设备上实时调整生产。每家企业都需要熟练掌握能生成和传输数据的互联工具与系统,以及用于改善效率和质量的分析工具。
推动工厂向数字化转型
通向数字化工厂之路是一条转型之路。如同其他转型一样,管理变革及其对员工的影响,是成功的关键。难以发现合格的人才、缺乏数字化的企业文化、部分员工不愿拥抱数字化变革,这些都是常见的挑战。这些问题的解决之道在于及早与员工携手合作,对培训和继续教育开展投资,而这些投入会因为数字化工厂所带来的效率提升而被抵消。数字化环境的培育必须要有领导层的全力支持。高层必须将数字化工厂战略视为工作的重点,摒弃保守主义的姿态,加快项目的审批流程,从而让数字化团队加快推进转型进程。同时,还需要设计简练的汇报渠道,确保数字化团队侧重于各类增值活动而不是疲于应付各类行政要求。
在推动数字化工厂的过程中,许多企业都将精力集中在各个工厂内部的纵向整合。在工厂内部实现MES 系统和ERP系统的连接,确实能实现显著的改善。但作为数字化生态体系中的一部分,数字化工厂应该发挥更大的作用。