8、Push-Pull推挽
■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。 ■良好的变压器磁芯利用率---在两个半周期中都传输功率。 ■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。 ■施加在FET上的电压是输入电压的两倍。
9、Half-Bridge半桥
■较高功率变换器极为常用的拓扑结构。 ■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。 ■良好的变压器磁芯利用率---在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。 ■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。 ■施加在FET上的电压与输入电压相等。
10、Full-Bridge全桥
■较高功率变换器最为常用的拓扑结构。 ■开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。 ■良好的变压器磁芯利用率---在两个半周期中都传输功率。 ■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。 ■施加在 FETs上的电压与输入电压相等。 ■在给定的功率下,初级电流是半桥的一半。
11、SEPIC单端初级电感变换器
■输出电压可以大于或小于输入电压。 ■与升压电路一样,输入电流平滑,但是输出电流不连续。 ■能量通过电容从输入传输至输出。 ■需要两个电感。
12、C’uk(Slobodan C’uk的专利)
■输出反相 ■输出电压的幅度可以大于或小于输入。 ■输入电流和输出电流都是平滑的。 ■能量通过电容从输入传输至输出。 ■需要两个电感。 ■电感可以耦合获得零纹波电感电流。
13、电路工作的细节
下面讲解几种拓扑结构的工作细节 ■降压调整器: 连续导电 临界导电 不连续导电 ■升压调整器 (连续导电) ■变压器工作 ■反激变压器 ■正激变压器
14、Buck-降压调整器-连续导电
■电感电流连续。 ■Vout 是其输入电压 (V1)的均值。 ■输出电压为输入电压乘以开关的负荷比 (D)。 ■接通时,电感电流从电池流出。 ■开关断开时电流流过二极管。 ■忽略开关和电感中的损耗, D与负载电流无关。 ■降压调整器和其派生电路的特征是: 输入电流不连续 (斩波), 输出电流连续 (平滑)。
15、Buck-降压调整器-临界导电
■电感电流仍然是连续的,只是当开关再次接通时 “达到”零。 这被称为 “临界导电”。 输出电压仍等于输入电压乘以D。
16、Buck-降压调整器-不连续导电
■在这种情况下,电感中的电流在每个周期的一段时间中为零。 ■输出电压仍然 (始终)是 v1的平均值。 ■输出电压不是输入电压乘以开关的负荷比 (D)。 ■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。
17、Boost升压调整器
■输出电压始终大于(或等于)输入电压。 ■输入电流连续,输出电流不连续(与降压调整器相反)。 ■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情况下:
在本例中,Vin = 5, Vout = 15, and D = 2/3. Vout = 15,D = 2/3.
18、变压器工作(包括初级电感的作用)
■变压器看作理想变压器,它的初级(磁化)电感与初级并联。
19、反激变压器
■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。
20、Forward 正激变换变压器
■初级电感很高,因为无需存储能量。 ■磁化电流 (i1) 流入 “磁化电感”,使磁芯在初级开关断开后去磁 (电压反向)。
21、总结
■此处回顾了目前开关式电源转换中最常见的电路拓扑结构。 ■还有许多拓扑结构,但大多是此处所述拓扑的组合或变形。 ■每种拓扑结构包含独特的设计权衡: 施加在开关上的电压 斩波和平滑输入输出电流 绕组的利用率 ■选择最佳的拓扑结构需要研究: 输入和输出电压范围 电流范围 成本和性能、大小和重量之比
-END-