引言
时钟是电磁干扰能量的主要来源之一,随着系统设计复杂性和集成度的大规模提高,电子系统的时钟频率越来越高,处理的难度也越来越大,下图是常见的时钟超标测试示意图。
一、为什么有些时钟的高次谐波会很容易超标???
分析:
周期信号由于每个取样段的频谱都是一样的,所以他的频谱呈离散形,但在各个频点上呈强大的特点,通常成为窄带噪声。而非周期信号,由于其每个取样段的频谱不一样,所以其频谱很宽,而且强度较弱,通常被称为宽带噪声。然而在一般系统中,时钟信号为周期信号,而数据和地址线通常为非周期信号,因此造成系统辐射超标的通常为时钟信号。
二、如何解决时钟及其谐波超标问题呢?
(一)抑制措施1—使用滤波电路
在时钟信号线靠近辐射源头增加滤波电路,通过RC时间常数减缓信号的边沿转换率;通常采用RC滤波电路,为了得到最理想的端接和防止反射,电阻应该尽量的靠近源端,电容最好放置电阻右边,如下图所示:
存在问题:
(1)电感和电容存在寄生参数,高频效果不理想;
(2)时钟频率越来越高,RC滤波效果非常有限;
(二)抑制措施2—屏蔽线缆
分析:
屏蔽线缆是非常有效的措施之一,屏蔽层既能直接遮挡了电缆中差模信号回路的差模辐射,也能为共模电流提供一个返回共模噪声源的路径,减小共模电流的回路面积,但是屏蔽线缆也存在以下问题,
(1)采用导电布屏蔽工艺复杂,人工成本高,效果不够理想;
(2)采用多层屏蔽FPC排线,成本高,柔韧性不好;
(3)采用微同轴屏蔽效果很好,但是成本很高;
以前传统的诸如屏蔽,滤波等EMI改善措施的应用已变得越来越困难,这促使设计工程师去探索更可行有效的方法来减少时钟能量****,而扩频时钟的适时出现则恰如其分的解决了这个问题,并从源头上——系统时钟处控制和减少了EMI****强度。目前,时钟扩展频谱技术被广泛使用在图像采集、图像显示及汽车电子等行业。
(三)抑制措施3—展频
1、在屏时钟或摄像头时钟增加展频IC
2、应用效果对比测试图
3、展频技术原理
通过对尖峰时钟进行调制处理,使其从一个窄带时钟变为一个具有边带的频谱,将尖峰能量分散到展频区域的多个频率段,从而达到降低尖峰能量,抑制EMI的效果。
4、展频的形态——展频IC和展频晶振两种形态
5、展频技术的优势
(1)降低成本
① 减少屏蔽材料的使用,简化工艺,节省人工成本;
② 减少对地线要求。确保所有数据和时钟信号返回的地线产生电磁干扰****满
足测量要求很难。一种解决方案是增加接地层,但是这样便增加了电路板的
成本。然而,扩频时钟技术既可以抑制电磁干扰,又可以降低对地线的要求。
(2)灵活性。系统可以设计成非扩频时钟与不同比例的扩频时钟,可以通过外
围参数自由切换。
(3)全系统电磁干扰抑制。其他电磁干扰方法,如滤波、接地、屏蔽方法,可
以在特定位置使用,从而减少特定位置的电磁干扰。与此相反,增加扩频
时钟,可以减少所有与时钟同步的信号的电磁干扰。
(4)展频晶振体积小,在车载摄像头、内窥镜等体积有要求产品实用度高。
6、实际成功应用案例
(1)图像采集类时钟信号,如摄像头时钟,指纹头等;
(2)图像显示类时钟信号,如屏时钟;
(3)晶振、DDR、SD等PCB内部时钟
三、总结
时钟扩展频谱技术在抑制时钟EMI上的应用,可以在一定程度上简化EMC对策,降低昂贵的屏蔽材料成本,增强产品大批量生产的一致性,因此在产品的设计初期做EMC设计规划时,应考虑做好展频电路的兼容设计,以防产品在上市前因EMI整改困难而焦头烂额,错失最好的市场机会!