由此可见,波束赋形的关键在于天线单元相位的管控,也就是天线权值的处理。根据波束赋形处理位置和方式的不同,可分为数字波束赋形,模拟波束赋形,以及混合波束赋形这三种。所谓模拟波束赋形,就是通过处理射频信号权值,通过移相器来完成天线相位的调整,处理的位置相对靠后。模拟波束赋形的特点是基带处理的通道数量远小于天线单元的数量,因此容量上受到限制,并且天线的赋形完全是靠硬件搭建的,还会受到器件精度的影响,使性能受到一定的制约。
数字波束赋形则在基带模块的时候就进行了天线权值的处理,基带处理的通道数和天线单元的数量相等,因此需要为每路数据配置一套射频链路。
数字波束赋形的优点是赋形精度高,实现灵活,天线权值变换响应及时;缺点是基带处理能力要求高,系统复杂,设备体积大,成本较高。Sub6G频段,作为当前5G容量的主力军,载波带宽可达100MHz,一般采用采用数字波束赋形,通过64通道****来实现小区内时频资源的多用户复用,下行最大可同时****24路独立信号,上行独立接收12路数据,扛起了5G超高速率的大旗。
在毫米波mmWave频段,由于频谱资源非常充沛,一个5G载波的带宽可达400MHz,如果单个AAU支持两个载波的话,带宽就达到了惊人的800MHz!如果还要像Sub6G频段的设备一样支持数字波束赋形的话,对基带处理能力要求太高,并且射频部分功放的数量也要数倍增加,实现成本过高,功耗更是大得吓人。因此,业界将数字波束赋形和模拟波束赋形结合起来,使在模拟端可调幅调相的波束赋形,结合基带的数字波束赋形,称之为混合波束赋形。混合波束赋形数字和模拟融合了两者的优点,基带处理的通道数目明显小于模拟天线单元的数量,复杂度大幅下降,成本降低,系统性能接近全数字波束赋形,非常适用于高频系统。
这样一来,毫米波频段的设备基带处理的通道数较少,一般为4T4R,但天线单元众多,可达512个,其容量的主要来源是超大带宽和波束赋形。在波束赋形和Massive MIMO的加成之下,5G在Sub6G频谱下单载波最多可达7Gbps的小区峰值速率,在毫米波频谱下单载波也最多达到了约4.8Gbps的小区峰值速率。5G,也因此拥有了灵魂。
好了,本期的内容就到这里,希望对大家有所帮助。的相位,让波束偏移了θ度,从而可以精确对准手机****信号。
共5条
1/1 1 跳转至页
5G怎样实现波束赋形?

关键词: 实现 赋形
共5条
1/1 1 跳转至页
回复
打赏帖 | |
---|---|
【STM32F769】AI之与本地deepseek对接被打赏50分 | |
Buck电路工作在CCM模式下电感电流的计算公式是什么?被打赏5分 | |
buck电路工作原理被打赏5分 | |
基于MSPM0L1306的MODBUS-RTU协议通讯实验被打赏100分 | |
我想要一部加热台+多合一调试工具被打赏18分 | |
每周了解几个硬件知识+485硬件知识分享被打赏10分 | |
【换取手持数字示波器】树莓派PICO调试器官方固件本地化部署实践被打赏24分 | |
【换取手持数字示波器】分享一个KEIL无法识别CMSIS-DAP调试器的解决办法被打赏20分 | |
【换取手持数字示波器】分享一个自制的ArduinoNano扩展板底板被打赏23分 | |
【换取手持示波器】树莓派PICOW网页烟花被打赏18分 |