这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » DIY与开源设计 » 电子DIY » 【分享】MOSFET工作原理和应用优势

共3条 1/1 1 跳转至

【分享】MOSFET工作原理和应用优势

助工
2020-07-06 14:15:31     打赏

金属-氧化层半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-SemiconductoRField-EffectTransistor,MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effecttransistor)。MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOSFET、PMOSFET、nMOSFET、pMOSFET等。
  工作原理:
  要使增强型N沟道MOSFET工作,要在G、S之间加正电压及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。
  若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系,如图4所示。此曲线负电荷。这层感应的负电荷和P型衬底中的多数载流子(空穴电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称称为转换特性。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。
  由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。它的结构如图5所示,它的转移特性,VP为夹断电压(ID=0)。
  耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。
  应用优势:
  近年来由于MOSFET元件的性能逐渐提升,除了传统上应用于诸如微处理器、微控制器等数位讯号处理的场合上,也有越来越多类比讯号处理的积体电路可以用MOSFET来实现,以下分别介绍在数位电路和模拟电路中的应用。
  数位电路
  数位科技的进步,如微处理器运算效能不断提升,带给深入研发新一代MOSFET更多的动力,这也使得MOSFET本身的操作速度越来越快,几乎成为各种半导体截止状态,这使得从电源功率损耗,只有在逻辑门主动元件中最快的一种。MOSFET在数位讯号处理上最主要的成功来自CMOS逻辑电路的发明,这种结构最大的好处是理论上不会有静态的(logicgate)的切换动作时才有电流通过。CMOS逻辑门最基本的成员是CMOS反相器(inverter),而所有CMOS逻辑门的基本操作都如同反相器一样,同一时间内必定只有一种晶体管(NMOS或是PMOS)处在导通的状态下,另一种必定是端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了积体电路的发热量。
  MOSFET在数位电路上应用的另外一大优势是对直流(DC)讯号而言,MOSFET的栅极端驱动芯片外负载(off-chipload)的驱动器阻抗为无限大(等效于开路),也就是理论上不会有电流从MOSFET的栅极端流向电路里的接地点,而是完全由电压控制栅极的形式。这让MOSFET和他们最主要的竞争对手BJT相较之下更为省电,而且也更易于驱动。在CMOS逻辑电路里,除了负责(driver)外,每一级的逻辑门都只要面对同样是MOSFET的栅极,如此一来较不需考虑逻辑门本身的驱动力。相较之下,BJT的逻辑电路(例如最常见的TTL)就没有这些优势。MOSFET的栅极输入电阻无限大对于电路设计工程师而言亦有其他优点,例如较不需考虑逻辑门输出端的负载效应(loadingeffect)。
  模拟电路
  有一段时间,MOSFET并非模拟电路设计工程师的首选,因为模拟电路设计重视的性能参数,如晶体管的转导(transconductance)或是电流的驱动力上,MOSFET不如BJT来得适合模拟电路的需求。但是随著MOSFET技术的不断演进,今日的CMOS技术也已经可以符合很多模拟电路的规格需求。再加上MOSFET因为结构的关系,没有BJT的一些致命缺点,如热破坏(thermalrunaway)。另外,MOSFET在线性区的压控电阻特性亦可在积体电路里用来取代传统的多晶硅电阻(polyresistor),或是MOS电容本身可以用来取代常用的多晶硅—绝缘体—多晶硅电容(PIPcapacitor),甚至在适当的电路控制下可以表现出电感(inductor)的特性,这些好处都是BJT很难提供的。也就是说,MOSFET除了扮演原本晶体管的角色外,也可以用来作为模拟电路中大量使用的被动元件(passivedevice)。这样的优点让采用MOSFET实现模拟电路不但可以满足规格上的需求,还可以有效缩小芯片的面积,降低生产成本。
  随著半导体制造技术的进步,对于整合更多功能至单一芯片的需求也跟著大幅提升,此时用MOSFET设计模拟电路的另外一个优点也随之浮现。为了减少在印刷电路板(PrintedCircuitBoard,PCB)上使用的积体电路数量、减少封装成本与缩小系统的体积,很多原本独立的类比芯片与数位芯片被整合至同一个芯片内。MOSFET原本在数位积体电路上就有很大的竞争优势,在类比积体电路上也大量采用MOSFET之后,把这两种不同功能的电路整合起来的困难度也显著的下降。另外像是某些混合讯号电路(Mixed-signalcircuits),如类比/数位转换器(analog-to-DigitalConverter,ADC),也得以利用MOSFET技术设计出效能更好的产品。
  近年来还有一种整合MOSFET与BJT各自优点的制程技术:BiCMOS(Bipolar-CMOS)也越来越受欢迎。BJT元件在驱动大电流的能力上仍然比一般的CMOS优异,在可靠度方面也有一些优势,例如不容易被“驱动能力的积体电路产品会使用BiCMOS技术静电放电”(ESD)破坏。所以很多同时需要复噪声号处理以及强大电流来制作。




关键词: MOSFET     电路     电压    

工程师
2020-07-07 22:12:26     打赏
2楼

优势还是蛮大的


工程师
2020-07-12 21:00:42     打赏
3楼

确实很容易就弄懂了


共3条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]