计算机数字控制系统传统经典之PID编程和z拉普拉斯变换分析
计算机控制系统传统经典之PID(比例,积分和微分)编程和z拉普拉斯经典传承, PID算法为一大特点, 控制系统把处理过程的环境的模拟信号,采集转换成数字信号,加以分析,运算,对执行机构适时控制. z变换(z-transform)及拉普拉斯数学(Laplace)变换,把连续(Continuous)模拟的s面函数投射到离散(Discrete)的z面函数. 方式为实时采样系统信号, 进行数模-模数(DA-AD)转换(Converter),采样(Sampling)时(t)有0,1,2级相应阶跃保持系统, 闭环或者开环,以及复合式控制系统.计算机对信号进行运算分析处理,频率响应特性,稳定可靠性分析, 实现PID控制,通过程序编程提高改善系统的频率响应特性,有效降低超调,大幅度提高优化控制系统的稳定性,和可靠性,与执行机构的控制有机结合,实现计算机数字控制,广泛用于多种场合,备受青睐!
************************************************
(内容附图一致,符合国际标准:)
章节11.5 控制计算机程序 Pg.432-2
若一台计算机单纯获得了闭环控制的一个增益,那么程序可以用FORTRAN或者BASCI语言写为
E=R-M
U=K*E (11.1)
一个BASIC程序实现一个增益和一个误差积分两者是
10 E=R-M
20 I=I+E*T
30 U=K1*E+K2*I
*****************************************************
章节11.6 z-变换 Pg.433
40 WAIT T
50 GO TO 10 (11.2)
近似积分在计算机的程序第20行实现,而?u(kT)在第30行产生。在周期T一个积分可以列为
。。。?~t1-t1+Te(t)dt=~e(kT)*T(积分算式),?。。。 (11.3)
这里?t1=kT. 积分的增益是?K2在第30行。
在章节10.6我们介绍了三个模式控制器的概念, 常常称为PID控制器。这些控制器包括一个比例项,一个积分项,和一个微分项。 使用一个计算机方程, 一个微分项可以实现如下:
U=KD*(E-E1)/T
E1=E
这里KD是微分项的增益, 而T是采样周期。变量E1是误差的上一个采样的值。 一个完整的三项控制器得到:
。。。?u(t)=K1e(t)+K2(比例积分微分PID算式).?。。。 (11.5)
****************************************************
那么一个PID控制器三项的计算机程序是
10 E=R-M
20 I=I+E*T
30 D=KD*(E-E1)/T
40 E1=E
50 U=K1*E+K2*I+D
60 DAC=U
70 WAIT T
80 GO TO 10 (11.6)
行60提供了计算的u(kT)给数模转换器。 当然计算机还可以用于近似逼近其它函数的计算机非线性方程。
11.6 z变换
由于理想的采样器的输出, ?r*(t),是一个序列的脉冲值?r(kT), 我们有
。。。?r*(t)=算式k=or(kT)o/(t-kT)?。。。 (11.7)
**********************************************
共1条
1/1 1 跳转至页
[经验]计算机数字控制系统传统经典之PID编程和z拉普拉斯变换分析
关键词: 经验 计算机 数字 控制系统 传统 经典 编程 普
共1条
1/1 1 跳转至页
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |
打赏帖 | |
---|---|
与电子爱好者谈读图四被打赏50分 | |
与电子爱好者谈读图二被打赏50分 | |
【FRDM-MCXN947评测】Core1适配运行FreeRtos被打赏50分 | |
【FRDM-MCXN947评测】双核调试被打赏50分 | |
【CPKCORRA8D1B评测】---移植CoreMark被打赏50分 | |
【CPKCORRA8D1B评测】---打开硬件定时器被打赏50分 | |
【FRDM-MCXA156评测】4、CAN loopback模式测试被打赏50分 | |
【CPKcorRA8D1评测】--搭建初始环境被打赏50分 | |
【FRDM-MCXA156评测】3、使用FlexIO模拟UART被打赏50分 | |
【FRDM-MCXA156评测】2、rt-thread MCXA156 BSP制作被打赏50分 |