从航空航天和防务、天然气勘探到制****和医疗设备制造,这些行业越来越需要能够实现高于24位分辨率的超高精度测量。例如,制****行业使用高精度实验室天平,该天平在2.1g满量程范围内提供0.0001mg分辨率,所以需要使用分辨率高于24位的模数转换器(ADC)。校准和测试这些高精度系统对仪器仪表行业来说是一大挑战,要求提供分辨率达到25位以上、测量精度至少7.5数字位的测试设备。
为了实现这种高分辨率,需要使用低噪声信号链。图1显示噪声与有效位数(ENOB)和信噪比(SNR)之间的关系。注意,噪声是基于基准电压(VREF) =5V,ADC输入设置为满量程范围来计算的。举例来讲,要实现25位分辨率,或者152dB动态范围,可允许的最大系统噪声为0.2437µVrms。
图1.噪声与ENOB和SNR。 基准电压设置输入模拟信号的限值,ADC可以解析该信号。公式1是ADC的理想转换函数,其中输出数字码(小数形式)通过模拟输入信号VIN、基准电压VREF和ADC位数N计算得出。
一般来说,ADC数据手册中的分辨率是基于输入短路技术得出,其中ADC输入连接至GND,或者ADC差分输入连接至共源极。ADC输入短路技术有助于确定ADC分辨率的绝对限值特性,方法是忽略ADC输入源噪声,消除VREF噪声的影响。结果确实如此,因为VIN设置为0V,使得VIN/VREF比也等于0V。 为了研究基准电压噪声对整体系统噪声的影响,图2显示了总系统噪声(rms)和ADC输入直流源电压之间的关系。实施本次测试期间,我们使用了AD7177-2 32位ADC,其VREF输入连接至LTC6655-5(5V),ADC输入则连接至低噪声直流源。ADC输出数据速率设置为10kSPS。注意,在整个ADC输入电压范围内,ADC噪声保持恒定(35nV/√Hz),但ADC直流输入源噪声增大(≤6nV/√Hz),与基准电压噪声(96nV/√Hz)相比,仍保持较低水平。如图2所示,总体噪声与ADC直流输入电压成正比。这是因为VIN(5V),ADC输入则连接至低噪声直流源。ADC输出数据速率设置为10kSPS。注意,在整个ADC输入电压范围内,ADC噪声保持恒定(35nV/√Hz),但ADC直流输入源噪声增大(≤6nV/√Hz),与基准电压噪声(96nV/√Hz)相比,仍保持较低水平。如图2所示,总体噪声与ADC直流输入电压成正比。这是因为VIN/VREF比随之增大,所以在ADC使用满量程输入时,VREF噪声主导整体系统噪声。信号链中各组件的噪声会以和方根(RSS)的方式叠加,导致曲线形状如图2所示。 图2.ADC VIN与rms系统噪声之间的关系。VREF设置为LTC6655-5。 为了实现25位或以上的高测量分辨率,即使是市面上最好的独立基准电压(具备低噪声规格)也需要获取一些帮助来衰减其噪声。添加外部电路(例如滤波器)可以帮助衰减噪声,以达到所需的ADC动态范围。 |