首先分析一下问题可能发生的场景,我觉得最主要有两个方面:
1.因为买家方面原因产生的退货问题,包括但不限于对商品不满意,尺寸不符合等非质量原因导致的退货问题。
2.因为卖家方面产生的退货问题,比如发货商品有破损,残缺亦或是发错订单。
我觉得用户提到的需求是退款功能方面的优化是一个伪需求,真实需求归根到底是因为退货问题而造成的运费损失,卖家更加关注的是减少因换货问题造成的利润下降(换货),交易失败导致的运费损失(退货)。
考虑到本公司的产品主要服务的对象的是私域方向的卖家,私域流量对于私域卖家来说是至关重要的。作为买家希望得到的是高质量的私域卖家的服务,否则会导致私域买家的流失问题。所以说不管是质量问题或者非质量问题导致的退货问题,卖家想要得到的是保证买家感受到高质量的服务的同时降低自己的损失或者利润的一种更为折中的解决方案,综合以上方面考虑,我给出以下几个解决方案:
1.首先最重要的是得接入购买运费险功能,帮助卖家减少因为退换货问题造成的损失。
2.由平台制定一个尽量平衡买卖双方需求的这么一个退换货的规则,需要区分出质量问题或者非质量问题而导致的退货,在第一条的基础上在决定买卖双方购买运费险的比重。如果是非质量问题,买家需要承担更高的运费险,如果是质量问题,需要卖家来承担更多的运费险费用。
3.考虑到买家个人性格的不同,可以分为两类:一类是同理心较强,商品大差不差或者嫌麻烦不会经常使用退货功能。另一类是遇到有一点不满意就使用退货功能的人群。因为本公司提供的是一个平台,可以捕捉到用户的购买行为数据。可以考虑设置一个买家退换货概率的阈值,在商家的后台添加一个提醒功能,对于超过这个阈值的买家订单给卖家提醒购买补偿金额更高的运费险,以此平衡不同买家的服务需求问题。
“在对电力线路的电压和电流进行测量时,为使测量值具有较高的精度,一般都采用交流采样技术。目前,比较常用的交流采样方法是:在交流信号的一个周期内,等间隔采样N点数据,然后利用傅立叶变换,计算出基波及一些谐波的有效值,为衡量供电质量通常还要求计算出各信号的相位。但由于同一测量装置要同时对很多路电压和电流量进行采样,而采样所用的 ”
在对电力线路的电压和电流进行测量时,为使测量值具有较高的精度,一般都采用交流采样技术。目前,比较常用的交流采样方法是:在交流信号的一个周期内,等间隔采样N点数据,然后利用傅立叶变换,计算出基波及一些谐波的有效值,为衡量供电质量通常还要求计算出各信号的相位。但由于同一测量装置要同时对很多路电压和电流量进行采样,而采样所用的A/D的输入又有限,不可能对电压和电流量同时进行采样,所以,一般将所有的交流通过多路开关的切换依次送入A/D进行采样。由于采用的是异步采样,所以同一个线路中的A、B、C三相之间的相位就会产生误差,所测出的同一个交流量的电压值和电流值之间的相位也会产生误差,如果不对相位采取一定的处理措施,就不能有效的提高计算值的精度。
硬件系统
硬件系统的示意图如图1所示。外部输入的电压电流经过电压互感器或电流互感器,经过信号调理,变换成小电压信号,把这些小电压信号经过滤波、放大处理之后送入模拟多路开关。接入多路开关的信号AIN1、AIN2、…AIN15的切换由DSP通过FPGA来控制。多路开关的输出接电压跟随器,以降低信号源的输出阻抗,保证得到较高的采集精度。经A/D转换完成后的数据由DSP芯片进行采集处理。
A/D可以选用Linear公司的16位双极性高精度模数转换器LTC1609。
如果进行N点傅立叶变换,应该在一个周期内等间隔均匀采样N个点。但如果以固定的时间间隔进行采样,当电网中交流信号频率偏离50Hz时,所采集到的N个点就不一定恰好为一个周期的数据。所以,在本系统中,DSP实时监测交流信号周期的变化,根据当前最新的周期值TAC计算出两个采集点之间的间隔时间为:TSMP=TAC/N。
DSP将TSMP送给FPGA,FPGA经过运算,产生两个信号:一个是采样命令信号SMP、另一个是启动A/D转换信号R/C,这两个信号都是低电平有效。图2是用MAX-PLUSII软件仿真出的SMP与R/C信号的波形关系。
当SMP信号到来时,表示新一轮采样的开始。SMP信号后紧跟15个R/C信号,依次负责对15路输入信号的A/D转换。所以每一轮采样可以对15路信号各采集一个点。每个点的数据经过64阶有限冲激响应滤波器滤除高次谐波之后存储在缓冲区内。
当A/D采用内部时钟模式时,先将A/D的片选/CS置为低电平,在R/C信号的下降沿,A/D将当前输入的信号转换为保持状态,开始进行A/D转换,同时A/D开始将上一次的转换结果向DSP发送。转换开始后R/C必须在1ms内跳回至高电平,以确保输出结果不会发生错误。本系统中,R/C信号的低电平持续0.5ms。两个R/C信号的下降沿之间的间隔TRC设置为12ms,以保证A/D启动下一路转换时当前的转换能够结束,以及上一次转换后的结果送入DSP。
校准
经过N个SMP信号之后,DSP就为15路信号各收集了一个周波共点的数据。对点数据进行快速傅立叶变换,得到各路信号的基波和若干次谐波所对应的频域值。从而可以求出有效值、相角等各个量。但实际上由于信号的幅度和相位经过变换、滤波、放大、采样、量化后处理时都要偏离理论值,所以,对于FFT运算的结果要进行校准处理。
可以用一个标准三相交流电源,将它的输出电压调整为电压100V、输出电流调整为5A、频率为50Hz、ABC三相各相差120度,然后将电压电流信号接入系统对应的输入端,通过上层软件向DSP发送校准命令,开始计算幅度和相位的校准参数。
幅度校准
如果有效值为100V、频率为50Hz的电压信号经过A/D转换后的数值大约在P左右,那么,我们就可以用P作为一个标度,用它来代表100V。同样,我们可以Q代表有效值为5A、频率为50Hz的电流。
在校准过程中,假定得到的m路电压的有效值的数字量为=[V1,V2,。..Vm],得到的电流的数字量为=[I1,I2,。..,I15-m],则我们把它们通过一个电压校正系数=diag[a1,a2,。..,am]和电流校正系数=diag[b1,b2,。..,b15-m]将其校正到标度上去。即有如下公式:
可求得:ai=P/Vi,b=Q/Ij其中i=1,2,…,m;j=1,2,…,15-m。
在系统正常工作时,将得到的信号的幅度有效值乘以校准系数可以得到比较精确的数值。
相位校准
交流电的相位关系是反映供电质量的比较重要的参数。相位校准从两个方面进行:一方面要补偿多个信号由于异步采样造成的相位偏差;另一方面要校准信号调理过程中造成的相位偏移。
如图3所示,假定在t时刻对一个信号采样的结果如(a)所示,但如果延迟到t+Dt采样的话,其结果如(b)所示,(b)与(c)的相位是一样的。通过对比可知,(c)的相位比(a)的相位超前,即,延迟采样的结果会使相位超前。
我们主要关心交流信号相位之间的相对关系,所以,以中间第8路信号AIN8为基准,其它信号的相位都向它校准。那么第8路信号以前的信号的相位都是滞后的,而第8路以后的各信号的相位都是超前的。对于滞后的相位要加上一个校准相位,对于超前的相位要减去一个校准相位。所以,第i(i=1,2,。..,15)路信号的基波需要校准的角度q为:qi=(8-i)×(TRC/TAC)×360o=(8-i)×g;设g=(TRC/TAC)×360o。
其中,TAC是交流的正常工频周期20ms,TRC是相邻两个R/C信号的间隔时间。谐波的校准角度应该再乘以谐波次数,假设只计算到n次
如果利用傅氏算法求出信号的频域表示,那么对它的相位补偿角度后信号可表示。
经过上述对相位的校正,所有的信号都相当于在同一时刻被采样。然后,再对各路信号校准由于在信号调理过程中造成的相位偏移。先求出各路信号基波的相位,然后将接入A相的第1、4、7、10、13路信号基波的相位减去120度,将接入C相的第3、6、9、12、15路信号基波的相位加上120度。这样各相信号之间就消除了本身固定的120度的相位差。这时候得到的“对比相位”是由于各路信号经过的物理通道不同而产生的。仍以第8路信号为基准,将各路信号的对比相位减去第8路信号的相位之后的值作为另一组相位校准参数:
最后将两组相位校准参数相加,即为最终的相位校准参数在系统正常运行时,利用对信号进行相位校准。
仿真验证
利用Matlab工具以一路信号为例说明对幅度的校准方法。
假定有一包含有高斯白噪声的正弦信号x=sin(2pft)+0.1×randn(1,N),其中f=0.25,fs=1,N=64。randn()函数产生一个均值为1呈正态分布的随机信号。信号x的频谱及64点采样后的值如图4所示。
通过对一个周期内的64点数据进行FFT运算,利用公式求得信号的幅度值为AC=1.104。其中Ar和Ai分别是第次谐波的实部和虚部,n是计算中所使用到的最高谐波次数(n≤32,这里取n=16)。如果预先通过前面所述求得校准系数a,就可以得到校准后的幅度值。在这里,根据信号x是由幅值为1的正弦波和均值为0.1的加性高斯白噪声组成的特点,由前面求校准系数的公式,我们可以假定a=1/(1+0.1)=0.909,则可得到最终校准后的幅度值为:A=AC×a=1.104×0.909=1.003。与实际的幅度值1.000相比,精度可达0.3%。
通过在实际产品中采用这种技术发现,一般情况下,精度可以控制在0.5%以内。可以满足大多数测控场合对精度的要求。对于相位的校准,方法与此类此。