瞬时功耗
考虑到电阻的瞬时电压取决于放大器的输出电压以及电源电压,本例中任何时刻每个分压器上的电压可能高达350 V(VCC = 250 V 且 VOUT = –100 V)。正弦输出波形在 VCC和 VEE分压器中产生 相同的平均功耗,但任何非零平均输出都会导致一个分压器 的功耗高于另一个分压器的功耗。对于满量程直流输出(或方波),瞬时功耗为最大功耗。
在此示例中,为将瞬时功耗保持在 0.5 W 以下,每个分压器中两个电阻之和(RSUM)不得小于以下值:
因此,电阻比为 1.5:1(对于 2.5:1 分压器)时,各个电阻的最小值如下:
RTOP = 147 kΩ
RBOT = 98 kΩ
FET 选择
承受最坏情况偏置条件所需的击穿电压主要决定 FET的选择;当输出饱和,使得一个 FET 处于最大 VDS ,另一个 FET 处于最小 VDS 时,便可明白这一点。在前面的示例中,最 高绝对 VDS 约为 300 V,即总原始电源电压(500 V)减去放大器的总电源电压(200 V)。因此,FET 必须承受至少 300 V 电压而不被击穿。
功耗必须针对最坏情况 VDS 和工作电流来计算,并且必须选择指定在此功率水平下工作的 FET。
接下来考虑 FET 的栅极电容,因为它会与偏置电阻一起形成一个低通滤波器。击穿电压较高的 FET 往往具有较高的栅极电容,而且偏置电阻往往为 100 kΩ,因此不需要多少栅极电容就能显著降低电路的速度。从制造商的数据手册中获得栅极电容值,计算 RTOP和 RBOT并联组合所形成的极点频率。
偏置网络的频率响应必须始终快于输入和输出信号,否则放大器的输出可能超出其自身的电源范围。暂时偏离到放大器电源轨之外会有损坏输入的风险,而暂时饱和或压摆受限会有造成输出失真的风险。任何一种状况都可能导致负反馈暂时丢失和不可预测的瞬态行为,甚至可能因为某些运算放大器架构中的相位反转而闩锁。
性能
直流线性度
图 2 显示了增益误差与输入电压的关系(直流线性度),增益为 20,电源为±140 V。
图2. 增益误差与输入电压的关系
压摆率
图 3 显示了压摆率曲线,增益为 20,电源为±140 V,测量值为 20.22 V/μs。
图 3. 压摆率
实现更高速度的权衡
功耗
如前所述,工作电压较高时,FET 的击穿电压(和相关的栅极电容)以及电阻值也必须较高。较高的电阻和电容值都会造成带宽降低,唯一可用的调整因素是电阻值。降低电阻值会提高带宽,但代价是功耗增加。
空间
低阻值、高功率的电阻尺寸较大,需占用较多电路板空间。以电容的形式在RBOT上增加一些引线补偿可以改善电路的频率响应。此电容与 RBOT和 RTOP电阻形成一个零点,抵消 FET 栅极电容所形成的极点。极点和零点相消,因此可以选择更高阻值的电阻,从而降低直流功耗。
结论
在需要较高电压但使用典型高压运算放大器不经济的应用中,常常会让常规运算放大器自举。自举有其优点和缺点。还有一个选择,ADHV4702-1 提供一种高达 220 V的精密高性能解决方案,无需自举。但是,当信号范围要求超过 220 V时, 该器件可以自举以处理超过标称信号范围两倍以上的电压,同时提供比自举低压放大器更高的性能。
共4条
1/1 1 跳转至页
[文章]常规运算放大器的自举电路设计2
关键词: 常规 运算 放大器 自举 电路设计
共4条
1/1 1 跳转至页
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |
打赏帖 | |
---|---|
【换取逻辑分析仪】-基于ADI单片机MAX78000的简易MP3音乐播放器被打赏48分 | |
我想要一部加热台+树莓派PICO驱动AHT10被打赏38分 | |
【换取逻辑分析仪】-硬件SPI驱动OLED屏幕被打赏36分 | |
换逻辑分析仪+上下拉与多路选择器被打赏29分 | |
Let'sdo第3期任务合集被打赏50分 | |
换逻辑分析仪+Verilog三态门被打赏27分 | |
换逻辑分析仪+Verilog多输出门被打赏24分 | |
【分享评测,赢取加热台】使用8051单片机驱动WS2812被打赏40分 | |
【换取逻辑分析仪】rtthread添加RRH62000传感器驱动-基于野火启明6M5被打赏48分 | |
换逻辑分析仪+Verilog多输入门被打赏27分 |