电池寿命和整体健康状况(健康状况)
温度和状态监测(安全操作区)
电压监视(充电状态)
充电时间
还有金属氧化物半导体场效应晶体管(mosfet) ,如充电或放电控制场效应****(CFETs 和 dfet) ,提供集成的充电和放电能力。这些 mosfet 提供了额外的安全优势,在故障条件下终止充电或负载。在这种情况下,充电器和负载连接到“通信”安全操作区一个 BMS 提供安全和可靠的电池使用。例如,它可以保护电池免受过高或过低的温度条件,免受过充或过放电。工作温度和工作电压应该始终在安全工作区域(SOA)内,如下面的电压与温度曲线图所示。图中的数值应该始终跟随 BMS 制造商的数据表,因为不同的系统是可用的。
如果电池的温度超过 SOA 由于过热或过热的条件,这是一个超温条件。它被认为是危险的,因为它可以融化电池和电路。一个塑料电池盒通常会在华氏200度左右开始软化,在华氏300度以上开始融化。在极端情况下,电池也可能熔化或爆炸。就像高温会加速化学反应一样,低温也会减慢化学反应的速度。低温状态可能由低温或冰冻温度引起,这也可能影响电池及其提供电力的能力。如果电压超过其理想状态极限,并且超过 SOA,那么就是过充电,这会损坏电池,使其失去功能。当电压下降到其状态极限以下时,就被认为是欠充电。这四种情况都可能损坏电池,或者有危险。一个可靠的 BMS 监视电路中的每个单元,并提供保护,如果电池的充电超过任何理想状态,则终止电池的充电。健康状态健康状态(SOH)是指电池与其理想状态相比的容量或电流状态。SOH 帮助确定可用或剩余电池寿命的百分比。在下图中,电池的容量随着充电或放电循环而减少。
荷电状态荷电状态(SOC)表示电池中剩余的电量或能量,并用电池剩余容量超过电池总容量的值来计算。电荷状态可以用百分比表示如下..。SOC 百分比 = (SOH/总容量) x100虽然这个公式提供了 SOC 的百分比,但它并不完全准确,因为它没有考虑到电池的总容量会随着时间的推移而减少这一事实。最终,电池将无法实现100% 的充电。因此,公式中的总容量就是 SOH 值。如果最初的电池容量是1000mah,而 SOH 现在是500mah,剩余容量是300mah,那么..有机碳百分比 = (300/500) x100 = 60%SOC 是如何确定的?确定充电状态最简单的方法是测量电池的充放电电压。然而,这并不是测量电池容量的理想方法,因为电池没有一个线性的充电或放电曲线。所以,并不是每一个读数都能被准确地表达出来。例如,考虑一下下面图表中的锂离子电池的充电和放电曲线。充电和放电电压逐渐改变电池的状态,直到最终放电保持稳定。测量电池容量的理想方法是通过库仑计数,测量随时间变化的输入和输出电流。它计算了一段时间内的放电电流,如果充电电流是相同的方式,则从值中减去它。总容量-(放电电流-充电电流)根据电池测量系统的不同,有几种不同的方法可用来测量电流中的放电或充电。这里有一些:电流分流器: 分流器是一个低欧姆电阻器,用于测量电流,通常,当电流超过测量装置的范围时。整个电流流过分流器并产生一个电压降,然后进行测量。这种方法有一个轻微的功率损失跨电阻和加热电池。霍尔效应: 当器件置于磁场中时,该传感器测量器件电压的变化。它消除了电流分流器典型的功率损耗问题,但成本昂贵,无法承受大电流。巨磁阻效应(GMR) : 这些传感器用作磁场探测器,比霍尔效应传感器更灵敏(也更昂贵)。它们非常精确。库仑计数: 如前所述,库仑涉及测量流入或流出电池的电流量。下面是一个图表,描绘了在不同时间测量的电流,以确定总放电电流相对于时间。库仑测量是相当复杂的,但可以由单片机完成。