一、奥列弗. 赫维赛德是何许人也奥列弗. 赫维赛德(Oliver Heaviside)是维多利亚时期英国人,出身于极度贫穷的家庭,听力部分残疾,还得过猩红热,从未上过大学,完全靠自学和兴趣掌握了高等科学和数学。
图片来自:https://en.wikipedia.org/wiki/Oliver_Heaviside
很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数,它大概长这个样子,可以看成一个阶跃函数,这个函数因为和狄拉克(Dirac)函数之间的千丝万缕的关系而显得尤为重要。我们现在说赫维赛德,当然不是因为这个函数,而是因为我们叹为观止、惊为天人,怎么夸都不过分的麦克斯韦方程组,麦克斯韦本人并没有见过这个方程组,它在一定程度上应该叫“赫维赛德方程组”。
这四个公式简直太对称了!而且它们的含义也很清晰:变化的电场产生磁场,变化的磁场产生电场,电磁波也就是电场和磁场此消彼长、相互转化、向前传播的形式。多亏了赫维赛德,麦克斯韦的理论才得以在十九世纪结束之前就真正站稳了脚跟并发扬光大。可以毫不谦虚的说:宇宙间任何的电磁现象,皆可由麦克斯韦方程组解释,包括光。也正是因为这个方程组完美统一了整个电磁场,让爱因斯坦始终想要以同样的方式统一引力场,并将宏观与微观的两种力放在同一组式子中:即著名的“大一统理论”,不幸的是麦克斯韦成功了,而爱因斯坦没有。麦克斯韦早在1873年便出版了跨时代巨著《电磁通论》,可惜的是,他英年早逝,他的方程组在生前并没有得到科学界的关注,其中一个很重要的原因是他的理论描述复杂得令人吃惊,他最初提出的电磁理**式包含了二十个方程,直接导致了他的理论在首次发表后的10多年时间内,几乎无人问津。赫维赛德最伟大的贡献是简化了麦克斯韦的原始方程组,通过他天才般的洞察力,挖掘出了蕴含在麦克斯韦方程内部的深刻意义,从而使简化后麦克斯韦方程组呈现出无与伦比的对称性,成为历史上是最漂亮的方程式(没有唯一)。而我们今天要说的,是赫维赛德的第二个重要贡献:运算微积分。学过电磁学的人都知道,在历史上人们发现好多定理公式,都是用微积分的形式表达的。1880年-1887年之间,赫维赛德在从事电磁场研究的同时,为求解微积分方程,在他的分析计算中引入了微分算子的概念,这个方法牛X在什么地方呢?——它可以将常微分方程转换为普通代数方程。天才与普通人的区别就是人家是靠“直觉”来解决问题的。赫维赛德是怎么解微分方程的呢?他把微分、积分运算用一个简单的算子来代替。——微分算子用 来表示,——高阶微分算子为,——积分算子符号用 表示,也就是说,在某种算子下,积分和微分对应的是倒数关系,至于算子 代表什么,赫维赛德也没有多解释,在缺乏严密数学基础的情况下,人家直接放在文章就用了,还发表了。比如常见的一个二阶常微分方程,用赫维赛德的微分算子变换一下,就变成了代数表达式,赫维赛德之所以这么做,是因为他的“物理直觉”告诉他这么做,就是这么硬。这显然是一种开外挂的行为,因此也受到当时的主流数学家们们的攻讦,他们认为赫维赛德就是十足的“民科”,文章没什么理论依据,自己在那空想呢。当然,赫维赛德也不是弱**,科学家怼起人来,也是毫不含糊:“因为我不能理解消化过程就拒绝晚餐吗?不,只要我满意这个结果。”好了,扯了那么远,有童鞋已经不耐心了:这些和拉普拉斯变换有什么关系?谜底就是:赫维赛德的微积分算子,就是拉普拉斯变换的前身。赫维赛德的算子验算虽然缺乏严密的数学基础,往往能给出重要且正确的结果,方法确实有效,无法驳倒。于是在世纪之交,数学家们开始尝试随算子理论进行严格化。后来,人在在70年前法国数学家拉普拉斯的一本有关概率论的著作上,找到了这种算法的依据,但是这本书上提出的并不是现在我们看到的拉普拉斯变换,而是著名的Z变换。什么?拉普拉斯变换不是拉普拉斯提出的?随着二战后拉普拉斯变换的广泛使用,赫维赛德算子的作用被弱化了,但是不可否认的是,这是这种“不正规”,仅靠“天才的直觉”而发明的方法,促成了现在拉普拉斯分析法。
二、傅里叶变换(轻量版拉普拉斯变换)在说拉普拉斯变换以前,我们要先提一下傅里叶变换,这可以看成是轻量版的拉普拉斯变换。傅里叶变换说的是什么事?说的是自然界的很多现象,都可以用三角函数进行分解。
图片来源:www.bolvan.ph.utexas.edu
也就是说,复指数函数是与正弦函数、余弦函数紧密相关的,那是不是某些信号也能通过复指数函数进行分解呢?我们不妨先来研究一下 有什么特殊的性质。在
[color=inherit !important]J Pan:自然常数“e”,工程中的自然数“1”861 赞同 · 97 评论文章
[color=inherit !important]J Pan:傅里叶变换后面的到底有什么小秘密1496 赞同 · 146 评论文章
[color=inherit !important]J Pan:被众人膜拜的欧拉恒等式是个什么东东?924 赞同 · 94 评论文章