在电磁能量的情况下,消光由散射和损失[2]组成。对应的手性参量是光学手性的消光散射,以及体积和界面上的手性转换。这就得到了守恒定律。
积分是在散射体的外表面∂Ω和体积Θ以及表面∂Θ上进行的。这些参量在JCMsuite中命名,如下表所示。更多细节可以在这里找到。
作为案例展示,我们计算散射体的手性响应如下图所示:
它的直径是一个波长的量级,它的介电常数固定为ε=4.5。在下面,我们将改变散射体的磁导率μ,并观察预测的对偶对称性[3]对于恒定比率ε/μ的散射体及其环境。周围的材料是ε=μ=1的空气。由于散射体是无损的和各向同性的,在它的体积内将没有转换。请参考四分之一波片的案例,以获得更多关于体积转换的信息。在这里,所需的参量被计算为如上所述的电磁手性通量的通量积分。如下图所示,对于接近对偶对称的材料,转换趋向于零。
在JCMsuite中,所有手性密度都是相似的。例如,我们在下面的图中展示了增强的近场光学手性密度的电子部分。这是一个后处理过程,即ExportFields:输出参量电手性密度。
具有ε/μ=1的双散射体的光手性密度X的近场增强
参考文献[1] Philipp Gutsche, Lisa V. Poulikakos, Martin Hammerschmidt, Sven Burger, and Frank Schmidt. Time-harmonic optical chirality in inhomogeneous space. In SPIE OPTO, Vol.9756m pages 97560X. International Society for Optics and Photonics, 2016.[2] Craig F. Bohren and Donald R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 1940.[3] Ivan Fernandez-Corbaton. Helicity and duality symmetry in light matter interactions: Theory and applications. PhD thesis, Macquarie University, Department of Physics and Astronomy, 2014.