什么是卡尔曼滤波?
共3条
1/1 1 跳转至页
卡尔曼滤波是一种高效的递归滤波器,它能够从一系列的含有噪声的测量中估计动态系统的状态。这种滤波技术由鲁道夫·卡尔曼在1960年提出,广泛应用于信号处理、控制理论、导航系统、计算机视觉和经济学等领域。
卡尔曼滤波原理:
1. 状态空间模型:卡尔曼滤波基于线性动态系统的状态空间表示,其中系统的状态可以由一组线性方程描述,并且状态转移受到控制输入的影响。
2. 预测(Prediction):在获得新的测量之前,卡尔曼滤波器使用系统模型来预测下一时刻的状态。这个过程涉及到系统动态的不确定性,通常假设为高斯噪声。
3. 更新(Update):当新的测量值可用时,卡尔曼滤波器会结合预测和测量来更新状态估计。这个过程涉及到测量噪声的不确定性,同样通常假设为高斯噪声。
4. 最优估计:卡尔曼滤波器利用最小均方误差准则来提供最优的状态估计。这意味着它最小化了估计误差的期望值。
5. 递归性:卡尔曼滤波器是递归的,它仅需要前一时刻的估计和当前时刻的测量来计算当前时刻的最优估计。
共3条
1/1 1 跳转至页
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |