通过前面的分析,我们已经大致知悉了硬件定时器通用实现模板,但这种理解是否正确,以及瑞萨完全实现了硬件定时器所需要的功能,我们并不了解,这部分只能通过查看瑞萨目前实现的硬件定时器代码才能清楚。
源码分析
注册入口
#ifndef TMR_DEV_INFO_CONFIG
#define TMR_DEV_INFO_CONFIG \
{ \
.maxfreq = 400000000, \
.minfreq = 1562500, \
.maxcnt = 0XFFFFFFFF, \
.cntmode = HWTIMER_CNTMODE_UP, \
}
#endif /* TIM_DEV_INFO_CONFIG */
static struct ra_hwtimer ra_hwtimer_obj[BSP_TIMERS_NUM] =
{
#ifdef BSP_USING_TIM0
[BSP_TIMER0_INDEX] = TIMER_DRV_INITIALIZER(0),
#endif
#ifdef BSP_USING_TIM1
[BSP_TIMER1_INDEX] = TIMER_DRV_INITIALIZER(1),
#endif
};
static const struct rt_hwtimer_ops _ops =
{
.init = timer_init,
.start = timer_start,
.stop = timer_stop,
.count_get = timer_counter_get,
.control = timer_ctrl,
};
static const struct rt_hwtimer_info _info = TMR_DEV_INFO_CONFIG;
static int rt_hw_hwtimer_init(void)
{
int result = RT_EOK;
for (int i = 0; i < sizeof(ra_hwtimer_obj) / sizeof(ra_hwtimer_obj[0]); i++)
{
ra_hwtimer_obj[i].tmr_device.info = &_info;
ra_hwtimer_obj[i].tmr_device.ops = &_ops;
if (rt_device_hwtimer_register(&ra_hwtimer_obj[i].tmr_device, ra_hwtimer_obj[i].name, &ra_hwtimer_obj[i]) == RT_EOK)
{
LOG_D("%s register success", ra_hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", ra_hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_hwtimer_init);从实现上看,注册函数并未对硬件定时器的硬件部分做任何操作,仅仅是对驱动内部参数赋了初始值并通过rt_device_hwtimer_register在系统中注册了硬件定时器,这也符合上层驱动要求暴露init接口的做法。
初始化入口
static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
RT_ASSERT(timer != RT_NULL);
struct ra_hwtimer *tim;
tim = (struct ra_hwtimer *)timer->parent.user_data;
if (state)
{
fsp_err_t fsp_err = FSP_SUCCESS;
fsp_err = R_GPT_Open(tim->g_ctrl, tim->g_cfg);
if (fsp_err != FSP_SUCCESS)
{
LOG_E("%s init fail", tim->name);
}
}
}从实现上看,目前瑞萨的代码并未实现解初始化部分,也就是说,如果应用上要实现低功耗的需求,可能就需要自行实现解初始化的部分。
启动入口
static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t pr, rt_hwtimer_mode_t opmode)
{
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(opmode != RT_NULL);
struct ra_hwtimer *tim;
tim = (struct ra_hwtimer *)timer->parent.user_data;
fsp_err_t err = FSP_SUCCESS;
/* set timer count */
R_GPT_CounterSet(tim->g_ctrl, 0);
/* set timer period register */
err = R_GPT_PeriodSet(tim->g_ctrl, pr);
if (err != FSP_SUCCESS)
{
return -RT_ERROR;
}
/* set timer to one cycle mode */
err = R_GPT_Start(tim->g_ctrl);
return (err == FSP_SUCCESS) ? RT_EOK : -RT_ERROR;
}启动入口主要是初始值设置并启动定时器。
中断处理入口
static void timer_one_shot_check(void)
{
IRQn_Type irq = R_FSP_CurrentIrqGet();
/* Recover ISR context saved in open. */
gpt_instance_ctrl_t *p_instance_ctrl = (gpt_instance_ctrl_t *) R_FSP_IsrContextGet(irq);
/* If one-shot mode is selected, stop the timer since period has expired. */
if (TIMER_MODE_ONE_SHOT == p_instance_ctrl->p_cfg->mode)
{
p_instance_ctrl->p_reg->GTSTP = p_instance_ctrl->channel_mask;
/* Clear the GPT counter and the overflow flag after the one shot pulse has being generated */
p_instance_ctrl->p_reg->GTCNT = 0;
p_instance_ctrl->p_reg->GTCCR[0U] = 0;
p_instance_ctrl->p_reg->GTCCR[1U] = 0;
/* Clear pending interrupt to make sure it doesn't fire again if another overflow has already occurred. */
R_BSP_IrqClearPending(irq);
}
}
#ifdef BSP_USING_TIM0
void timer0_callback(timer_callback_args_t *p_args)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIMER_EVENT_CYCLE_END == p_args->event)
{
rt_device_hwtimer_isr(&ra_hwtimer_obj[BSP_TIMER0_INDEX].tmr_device);
timer_one_shot_check();
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM1
void timer1_callback(timer_callback_args_t *p_args)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIMER_EVENT_CYCLE_END == p_args->event)
{
rt_device_hwtimer_isr(&ra_hwtimer_obj[BSP_TIMER1_INDEX].tmr_device);
timer_one_shot_check();
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif具体的功能是在中断处理中调用rt_device_hwtimer_isr回调,通知上层硬件定时器事件发生,并检查定时器设置是否是单次触发,如果是单次触发,则内部停用定时器。
停止入口
static void timer_stop(rt_hwtimer_t *timer)
{
struct ra_hwtimer *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (struct ra_hwtimer *)timer->parent.user_data;
/* stop timer */
R_GPT_Stop(tim->g_ctrl);
/* set timer count */
R_GPT_CounterSet(tim->g_ctrl, 0);
}停止入口是停用定时器并清空计数值,但个人认为其实停用计数值没有啥必要,因为这个启用时又会重新清0,而不使用时,这个计数值也不会被使用。
获取计数值入口
static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
{
struct ra_hwtimer *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (struct ra_hwtimer *)timer->parent.user_data;
timer_info_t info;
if (R_GPT_InfoGet(tim->g_ctrl, &info) != FSP_SUCCESS)
return -RT_ERROR;
return info.period_counts;
}获取计数值接口,并没有什么特殊的部分,就是从瑞萨自己的硬件适配层接口中获取实际的计数值并上报。
控制入口
const rt_uint32_t PLCKD_FREQ_PRESCALER[PLCKD_PRESCALER_MAX_SELECT] =
{
#ifdef SOC_SERIES_R7FA6M3
PLCKD_PRESCALER_120M,
PLCKD_PRESCALER_60M,
PLCKD_PRESCALER_30M,
PLCKD_PRESCALER_15M,
PLCKD_PRESCALER_7_5M,
PLCKD_PRESCALER_3_75M,
PLCKD_PRESCALER_1_875M,
#endif
};
static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
rt_err_t result = RT_EOK;
struct ra_hwtimer *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(arg != RT_NULL);
tim = (struct ra_hwtimer *)timer->parent.user_data;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint8_t index = 0;
rt_uint32_t freq = *((rt_uint32_t *)arg);
for (rt_uint8_t i = 0; i < PLCKD_PRESCALER_MAX_SELECT; i++)
{
if (freq <= PLCKD_FREQ_PRESCALER[i])
{
index = i;
}
}
tim->g_ctrl->p_reg->GTCR_b.TPCS = index;
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}控制接口只实现了HWTIMER_CTRL_FREQ_SET,也就是定时器的工作频率设定。
总结
至此,瑞萨的硬件定时器实现已经分析完毕,从实现代码上看,我们可以发现以下信息:
1.瑞萨的硬件定时器,并没有实现解初始化部分
2. 瑞萨实现的控制入口,仅仅实现了设置工作频率入口,其他直接上报不支持
这些未实现的部分,在使用瑞萨代码时需要注意区分。
我要赚赏金
