随着5G、车联网等技术的飞速发展,信号的传输速度越来越快,集成电路芯片的供电电压随之越来越小。早期芯片的供电通常是5V和3.3V,而现在高速IC的供电电压已经到了2.5V、1.8V或1.5V,有的芯片的核电压甚至到了1V。芯片的供电电压越小,电压波动的容忍度也变得越苛刻。对于这类供电电压较小的高速芯片的电压测试用电源噪声表示,测求要求从±5%到 ±-1.5%,乃至更低。
如上图1,日益发展的技术对芯片电压测试的挑战。 如果芯片的电源噪声没有达到规范要求,就会影响产品的性能,乃至整机可靠性。因此工程师需要准确地测量现代电路产品中的芯片电压的电源噪声。
2 芯片电源噪声的特点2.1 更小幅度,更高频率 以往电源噪声的要求维持在几十mV的量级,而随着芯片电压的降低,很多芯片的电源噪声已经到了mV的量级,某些电源敏感的芯片要求甚至到了百uV的量级。直流电源上的噪声是数字系统中时钟和数据抖动的主要来源。处理器、内存等芯片对直流电源的动态负载随着各自时钟频率而发生,并可能在直流电源上耦合高速瞬态变化和噪声,它们包含了1 GHz以上的频率成分。
因此与传统的电源相比,芯片电源的噪声具有频率高/幅度小等特点,这就为了工程师准确地测得芯片的电源噪声带来了挑战。



如果用传统的衰减比为1:1的无源探头,可以避免放大示波器的底噪。但是这种探头的带宽一般在38MHz,无法测到更高频率的电源噪声。同样会影响电源噪声测试的不确定性。
所以,为了准确测量电源噪声,需要一款衰减比为1:1,带宽到GHz的探头。
如上图4,探头的衰减比对电源噪声测试的影响。3.3 示波器的偏置补偿能力 电源噪声是叠加在芯片直流电压上的噪声,为此需要将示波器的偏置电压设到与直流电压相等的水平,再测量电源的噪声。例如某芯片的供电电压是3.3V,首先将示波器的偏置电压调到3.3V,然后再测试3.3V直流电源上的噪声波动,但是示波器在该偏置电压的垂直挡位会受限,一般只能到20mV/div,用来测试mV级别的电源噪声,会带来很大的误差。
为了解决类似问题,有的工程师使用隔直电容去除直流,但会导致直流电源压缩和丢失低频漂移信息。如果电容值选取不当,还会影响高频能量。
如上图5,示波器的偏置补偿能力受限。
如上图6,隔直电容影响低频信息。
3.4 探头的探接方式 电路形态各异,需要有更灵活的方法来进行信号的探接。探接的稳定性和寄生参数对被测电源电路的影响不可忽视,所以需要尽量贴近芯片的管脚,并使用短地线。 如上图7 贴近芯片管脚,使用短地线。3.5 示波器的FFT能力 由于电源分布网络PDN会受到干扰噪声的来源,因此需要示波器具有强大的FFT分析能力,以便分析的干扰噪声的频率,进而排查噪声的源头。
如上图8所示,FFT分析电源噪声的频谱。