一、硬件介绍
1、产品特点
空气质量评估板用于评估 Telaire 空气质量传感器,可支持 SM-PWM-01C 粉尘传感器,串行输出可以配置为通过 USB 连接将传感器数据发送到 PC,进行记录和分析等。
特性
Arduino 平台
保留的 SM-PWM-01C 传感器接口
保留的 T6713 二氧化碳传感器接口
保留的 T9602 温度和湿度传感器接口
支持蓝牙 BLE4.0 OSPF 模块
支持 128*64 OLED 屏幕
外部 USB 电源
参数 额定值
供电电源 5V DC
供电电流 1A
工作温度范围 0~60°
工作湿度范围 0~95%RH
输出电平(3V3) Low:0.8V Hight:2.7V
支持接口 I2C:T9602 温湿度传感器 UART:T6713 二氧化碳传感器 PWM:灰尘传感器 I2C:OLED屏幕模块
实物图
2、粉尘传感器
SM-PWM-01C是一款利用光学方法检测空气中粉尘浓度的传感器。在传感器中一个红外LED 和一个光接收器光轴相交,当带粉尘的气流通过交叉区域,产生折射光。光接收器检测到粉尘反射的红外LED光线,根据输出信号的强弱判断粉尘的浓度。粉尘传感器能检测像香烟颗粒大小的颗粒物与室内灰尘等大颗粒,通过输出PWM脉冲信号宽度来区分。
管脚 管脚定义
GND 地
P2 大颗粒粉尘的低脉冲输出P2
VCC 电源电压
P1 小颗粒粉尘的低脉冲输出P1
NC ——
3、OLED屏幕
0.96寸6针oled屏幕
主要参数
通信方式:lIC、SPI。 亮度、对比度可以通过程序指令控制。 OLED屏幕内部驱动芯片:SSD1306。
可根据后面焊接电阻R的选择,从而选择不同的通信方式(SPI / I2C)
引脚 定义
GND 电源负
VCC 电源正 3.3V-5V
SCL 时钟信号线
SDA 双向数据线
RES 复位
D/C 数据或命令切换
4、Arduino 兼容板(Ardunio UNO)
板载的MCU为8位微控制器 ATMEGA328P-PU
ATMEGA328P-PU 是高性能Atmel picoPower 8位AVR基于RISC的微控制器结合了32KB ISP闪存存储器,1024B EEPROM,2KB SRAM等;
二、环境搭建
1、下载Arduino IDE
2、下载相关例程
解压后工程文件目录
3、安装所需相关库
pinchangeint
Adafruit_SSD1306
三、程序代码分析
主要功能
1、传感器监测
T6700 CO2传感器:检测二氧化碳浓度;
T9602温湿度传感器:检测温度和湿度;
SM-PWM-01C粉尘传感器:检测PM2.5颗粒物浓度
2、输出方式
串口输出(USB模式):通过串口向电脑发送数据;
OLED显示屏输出:在OLED(SSD1306)屏上显示相关数据;
代码结构分析
传感器部分:
getT6700data():读取CO2浓度;
getT9602data():读取温湿度;
CalculateDustValue():计算粉尘浓度;
calcPM2():粉尘传感器中断服务程序;
显示部分:
displaySetupScreen():初始化显示;
displayReading():显示传感器读数;
轮询显示:温度 → 湿度 → CO₂ → AQI 颜色(带 PM2.5 值)
由于只有粉尘传感器,所以只会显示 PM2.5值、AQI 颜色;
#define USB //enable or disable monitoring on serial output, alternate with display, 19200 baud //#define OELCD_OP //enable or disable LCD Output, alternate with serial output #define DustSensor true // true or false dependent upon if dust sensor present, true by default as we cannot handshake #include "Wire.h" #include <SPI.h> #include <PinChangeInterrupt.h> // Width Guide "---------------------" #define SplashScreen "Telaire eval, v1.4" char ScreenHeader[] = " Amphenol Sensors"; char ScreenFooter[] = " Telaire Technology"; #ifdef OELCD_OP #include <Adafruit_GFX.h> #include <Adafruit_SSD1306.h> #include "OELCD.h" #endif #include "T9602.h" #include "T6700.h" #include "SM-PWM-01C.h" byte error; byte Connected = 0; // bit values define sensor presence B1 - T6700, B10 T9602 Temp, B100 T9602 Hum, B1000 Dust byte data[6]; byte kk = 1; unsigned int Offset = 0; //_______________________________________________setup_________________________________ void setup() { #ifdef USB //output to PC through USB Serial.begin(19200); // start serial for output Serial.println(SplashScreen); #endif Wire.begin(); #ifdef OELCD_OP // by default, we'll generate the high voltage from the 3.3v line internally display.begin(SSD1306_SWITCHCAPVCC); displaySetupScreen(); #endif Wire.beginTransmission(ADDR_6700); // check if T6700 series is present error = Wire.endTransmission(); if (error == 0) { #ifdef USB //output to PC through USB Serial.println("T6700 Detected"); #endif Connected = 1; } Wire.beginTransmission(ADDR_9602); // check if T9602 series is present error = Wire.endTransmission(); if (error == 0) { #ifdef USB //output to PC through USB Serial.println("T9602 Detected"); #endif Connected = Connected + 6; } // assume Dust Sensor is present as we cannot handshake it if (DustSensor) { #ifdef USB //output to PC through USB Serial.println("Dust Sensor Detected"); #endif Connected = Connected + 8; pinMode(PM2_IN_PIN, INPUT); //setup SWM PWM 01C Pins to work with pininterrupt algorithm pinMode(PM2_OUT_PIN, OUTPUT); // using the PinChangeInt library, attach the interrupts // used to read the channels attachPCINT(digitalPinToPCINT(PM2_IN_PIN), calcPM2, CHANGE); } #ifdef USB //output to PC through USB if ((Connected & B00000001) == 1 ) { Serial.print("CO2ppm"); Serial.print (","); } if ((Connected & B00000110) == 6 ) { Serial.print("Temperature"); Serial.print (","); Serial.print("Humidity"); Serial.print (","); } if ((Connected & B00001000) == 8 ) { Serial.print("PM2_Value"); Serial.print (","); Serial.print ("AQIColour"); } Serial.println (" "); #endif #ifdef OELCD_OP if ((Connected & B00000001) == 1 ) { displayReading("", "CO2 Sensor", "", Offset); delay(1000); } if ((Connected & B00000110) == 6 ) { displayReading("", "T9602 Sensor", "", Offset); delay(1000); } if ((Connected & B00001000) == 8 ) { displayReading("", "Dust Sensor", "", Offset); delay(1000); } #endif } //___________________________________________________loop______________________ void loop() { if (millis() >= (samplerate + sampletime)) { if ((Connected & B00000001) == 1 ) { getT6700data(); } if ((Connected & B00000110) == 6 ) { getT9602data(); } if ((Connected & B00001000) == 8 ) { CalculateDustValue(); } sampletime = millis(); //resets timer before printing output #ifdef OELCD_OP String SensorReading; String AuxInfo; String Units; if (kk >= 5) { kk = 1; } if (kk == 1) { if ((Connected & B00000010) == 2 ) //is T9602 temp present? { SensorReading = String(temperature); SensorReading.remove(4); Units = char(247); Units += "C"; AuxInfo = "Temperature"; Offset = 10; } else { kk++; } } if (kk == 2) { if ((Connected & B00000100) == 4 ) { //is T9602 hum present? SensorReading = String(humidity); SensorReading.remove(4); Units = "%rH"; AuxInfo = char(32); AuxInfo += char(32); AuxInfo += "Humidity"; Offset = 10; } else { kk++; } } if (kk == 3) { if ((Connected & B00000001) == 1 ) //is T6700 present? { SensorReading = CO2ppmValue; SensorReading.remove(4); Units = "ppm"; AuxInfo = "Carbon"; AuxInfo += char(32); AuxInfo += "Dioxide"; Offset = 15; } else { kk++; } } if (kk == 4) { if ((Connected & B00001000) == 8) { //is dust sensor present? SensorReading = String(AQIColour); Units = ""; AuxInfo = "AQI"; AuxInfo += char(32); AuxInfo += "Colour ["; AuxInfo += String(PM2_Value); AuxInfo += "]"; Offset = 0; } else { kk++; } } displayReading(SensorReading, AuxInfo, Units, Offset); kk++; #endif #ifdef USB //output to PC through USB if ((Connected & B00000001) == 1 ) { //is T6700 present? Serial.print(CO2ppmValue); Serial.print (","); } if ((Connected & B00000110) == 6 ) { //is T9602 present? Serial.print(temperature); Serial.print (","); Serial.print(humidity); Serial.print (","); } if ((Connected & B00001000) == 8 ) { //is dust sensor present? Serial.print(PM2_Value); Serial.print (","); Serial.print (AQIColour); } Serial.println (""); #endif } } //________________________________Screen Sub Routines_______________________________ #ifdef OELCD_OP void displaySetupScreen() { // Clear the buffer. display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0, 30); display.print(SplashScreen); display.display(); delay(2000); display.clearDisplay(); } void displayReading(String aa, String bb, String cc, int dd) { display.clearDisplay(); // display header detail display.setTextColor(WHITE); display.setTextSize(1); display.setCursor(0, 0); //header display.print(ScreenHeader); // display screen header 2nd line display.setCursor(0, 12); display.setTextSize(1); display.print(ScreenFooter); // display reading display.setTextSize(3); display.setCursor(10 + dd, 28); display.print(aa); //Sensor Reading // display units display.setTextSize(1); display.setCursor(100, 35); display.print(cc); //units // display aux info display.setTextSize(1); display.setCursor(25, 57); display.print(bb); //aux info display.display(); } #endif //________________________________________Sensor Sub Routines____________________________ void getT9602data() //gets temp and hum values from T9602 over I2C { Wire.beginTransmission(ADDR_9602); Wire.write(0); Wire.endTransmission(); byte aa, bb, cc, dd; Wire.requestFrom(ADDR_9602, 4); data[0] = Wire.read(); data[1] = Wire.read(); data[2] = Wire.read(); data[3] = Wire.read(); // humidity = (rH_High [5:0] x 256 + rH_Low [7:0]) / 16384 x 100 humidity = (float)(((data[0] & 0x3F ) << 8) + data[1]) / 16384.0 * 100.0; humidity = round(humidity); // temperature = (Temp_High [7:0] x 64 + Temp_Low [7:2]/4 ) / 16384 x 165 - 40 temperature = (float)((unsigned)(data[2] * 64) + (unsigned)(data[3] >> 2 )) / 16384.0 * 165.0 - 40.0; temperature = round(temperature * 10); temperature = temperature / 10; } //gets CO2 ppm value from T6700 series over I2C bus void getT6700data() { // start I2C Wire.beginTransmission(ADDR_6700); Wire.write(0x04); Wire.write(0x13); Wire.write(0x8B); Wire.write(0x00); Wire.write(0x01); // end transmission Wire.endTransmission(); // read report of current gas measurement in ppm delay(1); Wire.requestFrom(ADDR_6700, 6); // request 4 bytes from slave device data[0] = Wire.read(); data[1] = Wire.read(); data[2] = Wire.read(); data[3] = Wire.read(); CO2ppmValue = ((data[2] & 0x3F ) << 8) | data[3]; } //calculates the dust value from the stored void CalculateDustValue() // sample times accumulated by the interupts. { // create local variables to hold a local copies of the channel inputs // these are declared static so that thier values will be retained // between calls to loop. static uint16_t unPM2_In; static uint16_t unPM2_Time; // local copy of update flags static uint8_t bUpdateFlags; static long PM2_Output[25]; // check shared update flags to see if any channels have a new signal if (bUpdateFlagsShared) { noInterrupts(); // turn interrupts off quickly while we take local copies of the shared variables bUpdateFlags = bUpdateFlagsShared; if (bUpdateFlags & PM2_FLAG) { unPM2_In = unPM2_InShared; unPM2_Time = (unPM2_Time + unPM2_In); } bUpdateFlagsShared = 0; interrupts(); } PM2_Output[SampleCount] = unPM2_Time ; unPM2_Time = 0; PM2_Output[0] = PM2_Output[1] + PM2_Output[2] + PM2_Output[3] + PM2_Output[4] + PM2_Output[5] + PM2_Output[6] + PM2_Output[7] + PM2_Output[8] + PM2_Output[9] + PM2_Output[10] + PM2_Output[11] + PM2_Output[12] + PM2_Output[13] + PM2_Output[14] + PM2_Output[15] + PM2_Output[16] + PM2_Output[17] + PM2_Output[18] + PM2_Output[19] + PM2_Output[20] + PM2_Output[21] + PM2_Output[22] + PM2_Output[23] + PM2_Output[24]; /* converts LP outputs to values, calculate % LPO first, then converet to µg/m3 assuming conversion is linear output (µS) concentration change (250 or 600) ----------------------------------- x 100 x --------------------------------- + offset (0 or 250) sample rate (mS) x 1000 x NoOfSamples percentage change (3 0r 7) */ if (PM2_Output[0] / (samplerate * NoOfSamples * 10 ) >= 3); { PM2_Value = round((float)PM2_Output[0] / (samplerate * NoOfSamples * 10 ) * 600 / 7 + 250); } { PM2_Value = round((float)PM2_Output[0] / (samplerate * NoOfSamples * 10 ) * 250 / 3); } bUpdateFlags = 0; //reset flags and variables // Serial.print (PM2_Output[SampleCount]); Serial.print("\t"); if (SampleCount >= NoOfSamples) { SampleCount = 1; // Serial.print (PM2_Output[0]); Serial.print("\t");Serial.println("\t"); } else { SampleCount++; } // Colour Values based on US EPA Air Quality Index for PM 2.5 and PM 10 if (PM2_Value <= 12) { AQIColour = "Green "; } else if (PM2_Value <= 35) { AQIColour = "Yellow"; } else if (PM2_Value <= 55) { AQIColour = "Orange"; } else if (PM2_Value <= 150) { AQIColour = char(32); AQIColour += "Red"; } else if (PM2_Value <= 250) { AQIColour = "Purple"; } else { AQIColour = "Maroon"; } } // simple interrupt service routine void calcPM2() { if (digitalRead(PM2_IN_PIN) == LOW) { ulPM2_Start = micros(); } else { unPM2_InShared = (uint16_t)(micros() - ulPM2_Start); bUpdateFlagsShared |= PM2_FLAG; } }
四、程序烧录
1、连接USB数据线至开发板;
2、选择端口号对应的开发板;
3、点击 上传 烧录程序到开发板上;
五、演示效果
启用 #define USB 将在串口输出相关信息;
输出板载 SM-PWM-01C 传感器检测到的数值;