OpenVINOTM,给你看得见的未来!>>
电子产品世界 » 论坛首页 » 综合技术 » IPv6协议产生的背景、过程和现状(1)

共1条 1/1 1 跳转至

IPv6协议产生的背景、过程和现状(1)

菜鸟
2003-06-06 22:25:00    评分
姜 明   摘要:本文详细地阐述了下一代互联网络协议IPv6产生的背景和过程,对IPv6协议的特点及现状也做了简要的介绍。文中对下一代互联网络协议IPng的设计目标以及各种提案的优缺点进行了比较分析。以使广大读者对IPv6协议的产生过程有个较为清晰的认识。   关键字:Internet、IPv4、IPng、IPv6   近十年来,互联网得到了飞速的发展,其发展速度正如尼尔·巴雷特在《信息国的状态》一书的序言中所写的那样,“要想预言互联网的发展,简直就像企图用弓箭追赶飞行的子弹一样。哪怕在你每一次用指尖敲击键盘的同时,互联网就已经发生变化了”。这种发展不仅表现在互联网上的主机数量以几何级数增加,而且新的业务也在不断的涌现,这一切使得互联网呈现出新的特性。但也正是这种高速的增长,使得当前的互联网陷入了前所未有的困境。 IPv6协议产生的背景 1.1 互联网的起源和发展   因特网源于美国国防部的ARPANET。在上世纪60年代中期,正是冷战的高峰,美国国防部希望有一个命令和控制网络能够在核战争的条件下幸免于难,而传统的电路交换的电话网络则显得太脆弱。国防部指定其下属的高级研究计划局(ARPA)解决这个问题,此后诞生的一个新型网络便称为ARPANET。1983年,TCP/IP协议成为ARPANET上唯一的正式协议以后,ARPANET上连接的网络、机器和用户得到了快速的增长。当ARPANET与美国国家科学基金会(NSF)建成的NSFNET互联以后,其上的用户数以指数增长,并且开始与加拿大、欧洲和太平洋地区的网络连接。到了80年代中期,人们开始把互联的网络称为互联网。互联网在1994年进入商业化应用后得到了飞速的发展,1998年,因特网全球用户人数已激增到1.47亿。   70年代中期,ARPA为了实现异种网之间的互联与互通,开始制定TCP/IP体系结构和协议规范。时至今日,TCP/IP协议也成为最流行的网际互联协议。它不是国际标准化组织制定的,却已成为网际互联事实上的标准,并由单纯的TCP/IP协议发展成为一系列以IP为基础的TCP/IP协议簇。TCP/IP协议簇为互联网提供了基本的通信机制。随着互联网的指数增长,其体系结构也由ARPANET基于集中控制模型的网络体系结构演变为由ISP运营的分散的基于自治系统(Autonomous systems,AS)模型的体系结构。互联网目前几乎覆盖了全球的每一个角落,其飞速发展充分说明了TCP/IP协议取得了巨大的成功。 1.2 网络泰坦尼克危机   但是互联网发展的速度和规模,也远远出乎于二十多年前互联网的先驱们制定TCP/IP协议时的意料之外,他们从未想过互联网会发展到如此的规模,并且仍在飞速增长。随着互联网的普及,网络同人们的生活和工作已经密切相关。同时伴随互联网用户数膨胀所出现的问题也越来越严重。据预测,现有的IP地址将在2005至2012年左右消耗殆尽,这个问题被称为“网络泰坦尼克危机”。   目前互联网使用的是Internet协议第4版本即IPv4。IPv4协议规定,每个互联网上的主机和路由器都有一个32位的IP地址,它包括网络号和主机号,这一编码组合是唯一的。把IP地址分成两部分的优点是使路由器中的路由表不会太大。路由器不必为每个目的主机维持一个路由选择表项,而为每个网络维护一个路由选择表项,当进行路由时,只检查目的地址的网络部分。   IPv4地址结构分为A、B和C三类。A类地址可用作126个网络,每个网络可容纳1600万个主机节点。B类地址可用作16000个网络,每个网络可容纳65000个主机节点。C类地址可用作2百万左右的网络,每个网络可容纳254个主机节点。为何当前的IP 地址不足,ROAD小组研究后认为主要原因是IPv4 B类地址空间耗尽和地址分配的非分级结构导致平面的路由空间。   当1981年9月TCP/IP协议开始发布时,当时互联网上大约只有1000台主机,并且几乎所有的主机都是基于时分系统的大型机,为单个用户设计的计算机几乎不存在。因此在当时IPv4所拥有的40亿个地址简直就是天文数字,在分配IP地址时也就没必要太保守,从而导致早期的地址分配方案不尽合理,浪费比较严重。例如,申请到一个B类地址的用户单位,理论上可以用约65000个IP地址,但实际上接入的没有这么多主机。这也就意味着相当一部分IP地址被闲置,并且不能被再分配。另外由于历史的原因,美国一些大学和公司占用了大量的IP地址,例如MIT、IBM和AT&T分别占用了1600多万,1700多万和1900多万个IP地址,而分配给象中国这么大国家所用的地址量还不如美国一个大学。由此导致一方面大量的IP地址被浪费,另一方面在互联网快速发展的国家如欧洲、日本和中国得不到足够的IP地址。最后导致互联网地址耗尽和路由表爆炸。到目前为止,A类和B类地址已经用完,只有C类地址还有余量。   另外,目前占有互联网地址的主要设备早已由20年前的大型机变为PC机,并且在将来,越来越多的其他设备也会连接到互联网上,包括PDA、汽车、手记、各种家用电器等。特别是手机,为了向第三代移动通信标准靠拢,几乎所有的手记厂商都在向国际因特网地址管理机构ICANN申请,要给他们生产的每一台手机都分配一个IP地址。而竞争激烈的家电企业也要给每一台带有联网功能的电视、空调、微波炉等设置一个IP地址。IPv4显然已经无法满足这些要求。 1.3 IPv4地址匮乏暂时的解决方案-CIDR和NAT及其缺陷   为了缓解地址危机的发生,相应地产生了两种新的技术无类型网络区域路由技术CIDR和网络地址翻译技术NAT。   采用无类型网络区域路由(Classless Inter Domain Routing, CIDR)的目的是为了节省B类地址。我们知道目前B类地址严重缺乏,因此那些拥有数千个网络主机的企业只能采用多个C类网络号,而不采用单个B类网络号。尽管分配这些C类地址解决了B类地址的匮乏的问题,但它却带来了另一个问题:每个C类网络都需要一个路由表表项。CIDR是一个防止Internet路由表膨胀的方法。CIDR的基本观点是采用一种分配多个IP地址的方式,使其能够将路由表中的表项总和(summarization)成更少的数目。CIDR为那些拥有数千个网络主机的企业分配一个由一系列连续的C类地址组成的地址块,而不采用单个B类网络号。例如,假设某个企业网络有15 00个主机,那么可能为该企业分配8个连续的C类地址,如:192.56.0.0至192.56.7.0,并将子网掩码定为255.255.248.0,即地址的前21位标识网络,剩余的11位标识主机。这样,所有这8个C类地址可以参照Internet上的单个路由表表项。但是,要使用这种总和,必须满足以下三种特性: ●为进行路由要对多个IP地址进行总和时,这些IP地址必须具有相同的高地址位。 ●路由表和路由算法必须扩展成根据32位IP地址和32 位掩码做出路由决策的。 ●必须扩展路由协议使其除了32位地址外,还要有32 位掩码。OSPF和RIP-2都能够携带第BGPv4所提出的32 位掩码。   “无类型”的意思是现在的路由决策是基于整个32位IP地址的掩码操作,而不管其IP地址是A类、B类或是C类,都没有什么区别。CIDR的最初是针对新的C类地址提出的。这种变化将使互联网路由表增长的速度缓慢下来,但对于现存的路由则没有任何帮助。尽管通过采用CIDR,可以保护B类地址免遭无谓的消耗,但是依然无法从根本上解决IPv4面临的地址耗尽问题,这只是一个短期解决方案。   另一个延缓IPv4地址耗尽的方法是网络地址翻译(Network Address Translation,NAT)。简单的说,NAT就是在内部网络中使用内部地址,而当内部节点要与外部网络进行通讯时,就在边缘网关处,将内部地址替换成全局地址,从而在外部公共网上正常使用(如图所示)。所谓内部地址,是指在内部网络中分配给节点的私有IP地址,这个地址只能在内部网络中使用,不能被路由。虽然内部地址可以随机挑选,但是通常使用的是RFC 1918中定义的专用地址:10.0.0.0~10.255.255.255,172.16.0.0~172.16.255.255,192.168.0.0~192.168.255.255。NAT将这些无法在互联网上使用的保留IP地址翻译成可以在互联网上使用的合法IP地址。而全局地址,是指合法的IP地址,它是由NIC或者网络服务提供商ISP分配的地址,对外代表一个或多个内部局部地址,是全球统一的可寻址的地址。   NAT的主要作用是节约了地址空间,减少了对合法地址的需求,多个内部节点共享一个外部地址,使用端口进行区分(Network Address Port Translation,NAPT),这样就能更有效的节约合法地址。由于目前要想得到一个A类或B类地址十分困难,因此许多企业纷纷采用了NAT 。NAT使企业不必再为无法得到足够的合法IP地址而发愁了。然而,NAT也有其无法克服的弊端。首先,NAT会使网络吞吐量降低,由此影响网络的性能。其次,NAT必须对所有IP包进行地址转换,但是大多数NAT无法将转换后的地址信息传递给IP包负载,这个缺陷将导致某些必须将地址信息嵌在IP包负载中的高层应用如FTP和WINS注册等的失败。 [img]http://bbs.edw.com.cn/UploadFile/20036614243486696.jpg[/img] 2、下一代网络协议IPng的目标和提案 2.1 IPng的设计目标   为了解决这些问题,早在90年代初期,互联网工程任务组IETF(Internet Engineering Task Force)就开始着手下一代互联网协议IP-the next generation(IPng)的制定工作。IETF在RFC1550里进行了征求新的IP协议的呼吁,并公布了新的协议需实现的主要目标: ●支持几乎无限大的地址空间 ●减小路由表的大小 ●简化协议,使路由器能更快地处理数据包 ●提供更好的安全性,实现IP级的安全 ●支持多种服务类型,尤其是实时业务 ●支持多目传送,即支持组播 ●允许主机不更改地址实现异地漫游 ●支持未来协议的演变 ●允许新旧协议共存一段时间 ●支持未来协议的演变以适应底层网络环境或上层应用环境的变化 ●支持自动地址配置 ●协议必须能扩展,它必须能通过扩展来满足将来因特网的服务需求;扩展必须是不需要网络软件升级就可实现的 ●协议必须支持可移动主机和网络 2.2 IPng的提案   [1]TUBA:含有更多地址的TCP和UDP(TCP and UDP with Bigger Addresses,TUBA,由RFC1347描述)建议采用ISO/OSI的CLNP协议来代替IPv4,这种解决方案允许用户有20字节的NSAP地址,以及一个可以使用的OSI传输协议的平台。   [2]IPv7,TP/IX,CATNIP:IPv7是1992年由Robert Ullmann提出的。1993年,RFC1475进行了更详细的描述,其标题为“TP/IX:下一代的Internet”,TP/IX有64位地址。TP/IX后来演变成了RFC 1707中定义的另一个协议CATNIP(Common Architecture for the Internet)。该方案包含了诸如快速信息包处理和新的RAP路由协议等观点,试图为IP、CLNP和IPX等信息包定义一个统一的格式,为众多的传输协议如OSI/TP4、TCP、UDP和SPX等提供支持。   [3]IP in IP,IPAE:IP in IP是1992年提出的建议,计划采用两个IPv4层来解决互联网地址的匮乏:一层用于全球骨干网络,另一层用于某些特定的范围。到了1993年,这个建议得到了进一步的发展,名称也改为了IPAE(IP Address Encapsulation),并且被采纳为SIP的过渡方案。   [4]SIP:SIP(Simple IP)是由Steve Deering在1992年11月提出的,他的想法是把IP地址改为64位,并且去除IPv4中一些已经过时的字段。这个建议由于其简单性立刻得到了许多公司的支持   [5]PIP:PIP(Paul’s Internet Protocol)由Paul Francis提出,PIP是一个基于新的结构的IP。PIP支持以16位为单位的变长地址,地址间通过标识符进行区分,它允许高效的策略路由并实现了可移动性。1994年9月,PIP和SIP合并,称为SIPP。   [6]SIPP:SIPP(Simple IP Plus,由RFC1710描述)试图结合SIP的简单性和PIP路由的灵活性。SIPP设计为高性能的网络上运作,比如ATM,同时也可以在低带宽的网络上运行,如无线网络。SIPP去掉了IPv4包头的一些字段,使得包头很小,并且采用64位地址。与IPv4将选项作为IP头的基本组成部分不同,SIPP中把IP选项与包头进行了隔离。该选项如果有的话,将被放在包头后的数据报中并位于传输层协议头之前。使用这种方法后,路由器只有在必要的时候才会对选项头进行处理,这样一来就提高了对于所有数据进行处理的性能。 摘自 赛迪网



关键词: 协议     生的     背景     过程     现状     互联网     发展     互联         

共1条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]