这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 嵌入式开发 » FPGA » 用CPLD实现单片机读写模

共2条 1/1 1 跳转至

用CPLD实现单片机读写模

专家
2009-03-18 12:51:23     打赏

  CPLD(复杂可编程逻辑电路)是一种具有丰富的可编程I/O引脚的可编程逻辑器件,具有在系统可编程、使用方便灵活的特点;不但可实现常规的逻辑器件功能,还可实现复杂的时序逻辑功能。把CPLD应用于嵌入式应用系统,同单片机结合起来,更能体现其在系统可编程、使用方便灵活的特点。 CPLD同单片机接口,可以作为单片机的一个外设,实现单片机所要求的功能。例如,实现常用的地址译码、锁存器、8255等功能;也可实现加密、解密及扩展串行口等单片机所要求的特殊功能。实现嵌入式应用系统的灵活性,也提高了嵌入式应用系统的性能。 CPLD(复杂可编程逻辑电路)是一种具有丰富的可编程I/O引脚的可编程逻辑器件,具有在系统可编程、使用方便灵活的特点;不但可实现常规的逻辑器件功能,还可实现复杂的时序逻辑功能。把CPLD应用于嵌入式应用系统,同单片机结合起来,更能体现其在系统可编程、使用方便灵活的特点。 CPLD同单片机接口,可以作为单片机的一个外设,实现单片机所要求的功能。例如,实现常用的地址译码、锁存器、8255等功能;也可实现加密、解密及扩展串行口等单片机所要求的特殊功能。实现了嵌入式应用系统的灵活性,也提高了嵌入式应用系统的性能。] 2 Xilinx公司的可编程逻辑器件 Xilinx公司的XC9500系列可编程逻辑器件是一款高性能、有特点的可编程逻辑器件。它的系统结构如图1所示。从结构上看,它包含三种单元:宏单元、可编程I/O单元和可编程的内部连线。它的主要特点是: ①在所有可编程引脚之间pin-pin延时最短可为5ns;系统的时钟速度可达到100MHz。 ②XC9500系列的容量范围为36~288个宏单元 ③5V在系统可编程。可以编程10000次。 ④具有强大的强脚锁定能力。 ⑤每个宏单元都有可编程低功耗模式。 ⑥没有用的引脚有编程接地能力。 Xilinx的XC9500系列可编程逻辑器件的主要性能如表1所列。 按此在新窗口浏览图片注:fCNT=16位计数器最高工作频率;fSYSTEM=整个系统的最高工作效率。 3 CPLD同单片机接口设计 CPLD同单片机接口原理如图2所示。按此在新窗口浏览图片 CPLD同单片机接口设计中,单片机采用Atmel公司的AT89C52,CPLD采用Xilinx公司的XC95216。该CPLD芯片结构及性能见图1和表1。AT89C52通过ALE、CS、RD、WE、P0口(数据地址复用)同XC95216芯片相连接。 ALE:地址锁存信号。 CS:片选信号。 RD:读信号。 WR:写信号。 AD0~AD7:数据地址复用信号。 本例的设计思想是,在XC95216设置两个控制寄存器,通过单片机对两个控制寄存器的读写来完成对其它过程的控制。 XC95216设置的两个控制寄存器,可以作内部寄存器,也可以直接是映射为I/O口。 4 CPLD同单片机接口设置结果 本例中,使用Xilinx公司提供的Fundation ISE 4.2i+Modelsim 5.5f软件实现设计。实现设计的源文件模块如下: /************************** //MCU和XC95216接口程序 //目的:MCU读写XC95216 /**************************/ module mcurw(MCU_DATA,ALE,CS,RD,WE,CONREG1,CONREG2); inout[7:0]MCU_DATA;//单片机的地址数据复用信号 output[7:0]CONREG1,CONREG2;//内部控制寄存器 input ALE; //单片机的地址锁存信号 input CS; //单片机的片选信号 input RD; //单片机的读信号 input WE; //单片机的写信号 reg[7:0]LAMCU_DATA; //内部控制寄存器 reg[7:0]ADDRESSREG; //内部地址锁存寄存器 reg[7:0]CONREG1; //内部控制寄存器 reg[7:0]CONREG2; //内部控制寄存器 assign MCU_DATA=RD?8'bzzzzzzzz:LAMCU_DATA; initial //寄存器初始化 begin LAMCU_DATA<=0; ADDRESSREG<=0; CONREG1<=0; CONREG2<=0; end always@(negedge ALE) begin ADDRESSREG<=MCU_DATA; //地址锁存 End always@(posedge WE) begin if(!CS &&ADDRESSREG[0]= =0)) LAMCU_DATA <=CONREG1; //从地址为0的CONREG1寄存器读数据 else if(!CS&&(ADDRESSREG[0]= =1))LAMCU_DATA<=CONREG2; //从地址为1的CONREG2寄存器读数据 else LAMCU_DATA<=8'bzzzzzzzz; end else LAMCU_DATA<=8'bzzzzzzzz; End Endmodule 使用Modelsim 5.5f仿真结果如图3和图4所示。图中ALE、CS、RD、WE、MCU_DATA是测试激励源信号,代表AT89C52接口信号;CONREG1和CONREG2的内部寄存器;ADDRESSREG是内部地址锁存寄存器。 图3是CONREG1写过程。首先,在ALE信号的下降沿,锁存MCU_DATA的数据到ADDRESSREG内部地址锁存寄存器。然后,在WE信号的上升沿,把MCU_DATA(0XAA)的数据锁存到寄存器CONREG1。 图4是CONREG1读过程。首先,在ALE信号的下降沿,锁存MCU_DATA(0X00)的数据到ADDRESSREG内部地址锁存寄存器。然后,在RD信号的低电平期间,把MCU_DATA(0XAA)的数据锁存到寄存器CONREG1。 从图3和图4可以看出,对CONREG1寄存器的读、写过程完全满足进序要求,CONREG2的读写过程同CONREG1一样,也完全满足时序要求,实现了期望的功能。




关键词: 实现     单片机     读写     可编程     逻辑     功能     地址     锁存    

菜鸟
2009-08-21 15:34:36     打赏
2楼
怎么没有图啊?

共2条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]