这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 综合技术 » 物联网技术 » 采用新的滤波器结构减小D类放大器的EMI

共1条 1/1 1 跳转至

采用新的滤波器结构减小D类放大器的EMI

高工
2009-08-14 14:57:37     打赏
图3c给出了共模输入时同一滤波器的输出。同样,两个输出的响应曲线均相对于GND。输出结果(Y轴偏移)具有很大的尖峰,并具有明显的欠阻尼。结合共模信号下滤波器的等效电路(图4),就很容易理解为什么会出现这一结果。由于仿真时采用理想匹配的电感和电容器,因此阻性负载上差分信号为零,因此不会LC元件不会出现任何衰减。L1与C1谐振(L2与C3同理)产生峰值。在时域内(图中未显示),这种情况将会出现较大的过冲和振荡。注意,输入共模信号时,C2将引入一个零点。因此滤波器的截止频率(此时称作谐振频率可能更加准确)将高于差分输入时的截止频率。



图4. 共模输入下,图3a中传统LC滤波器的等效电路

这时你或许会问,这样会有问题么?如果该频率下输出频谱共模能量为零,那么便没什么问题。然而,如果峰值频率与D类放大器开关频率正好相等,则扬声器和连线上将出现较大的输出电压幅度。同时,MAX9704的扩展频谱调制(SSM)模式将使欠阻尼滤波器在音频频带以上引入相当的噪声。扩展频谱模式是引脚可选的,此时高频开关能量为“白噪声”,可以通过逐周期随机调整开关时间降低噪声幅度。这种扩展频谱方案简化了无滤波应用中的EMI兼容性设计。

欠阻尼共模响应问题
针对上述共模问题的解决方案之一是保留图3a的基本结构,但增加抑制高谐振共模信号的阻尼元件。图5a给出了在两个输出节点和GND之间串联RC元件。如果应用中对效率的要求不是很高,可以在输出节点和GND之间仅连接一个电阻,但电容器C4和C5将有助于降低R1和R2上的额外功率损耗。
C4和C5的值应权衡选取:一方面增大C4与C5值有助于R1和R2衰减尖峰,另一方面应减小C4和C5降低高音音频(高达20kHz)下的损耗。如果共模截止频率远大于差模频率,则很容易进行选择,例如只需增加C2相对于C1和C3的比率既可实现。增加共模截止频率,则可减小C4和C5的值,同时增大R1和R2的值,这样将降低R1和R2上的音频损耗。若共模截止频率太高,则电缆上的共模成分就会过多,因此,必须合理选择差分和共模的-3dB频点的比率。本案例的滤波器采用了1:5的比率。



图5. 在传统LC滤波器的每个输出端增加一个RC网络(a),可以改进差分信号的频响(b)和共模信号的频响(c)。

图5b为图5a滤波器对差分输入的响应,图5c为共模输入的响应。注意:图5c中共模截止频率较高(-3dB带宽约为110kHz,差分输入为28kHz),带有平缓且合理控制的尖峰。该截止频率远高于最高音频(也低于D类开关频率基波),因此具有较好的效果。
有些低开关频率(200kHz至300kHz)应用不适合采用图5c所示的方案。对于这类产品可能需要采用其他方法和拓扑结构。MAX9704立体音D类放大器(图6)可设置为940kHz固定频率模式(FFM) (FS1 = 低,FS2 = 高),此时效果最佳。工作在FFM模式下的MAX9704通过引脚选择将开关周期设为恒定值(具有三个可选项),以满足应用需求。



图6. MAX9704立体声D类功率放大器的典型应用电路

图7和图8给出使用图5滤波器对MAX9704进行滤波时的时域性能。两种情况下负载阻抗均为8。图7同时显示了FILT1和FILT2节点的波形图(顶部的迹线),以及得的1kHz差分输出波形(底部的迹线)。顶部迹线的噪声是输出开关信号滤波以后的残余信号(电源电压为15V)。图8为图7迹线的细节显示。注意:纹波主要来自940kHz开关频率,两通道上表现为共模信号的形式。还应注意输出上没有高次谐波,表明有效抑制了EMI (幅射EMI的起始测试频率通常高于30MHz) 。



图7. 用MAX9704驱动图5a电路时FILT1和FILT2上产生的信号波形(同时显示在顶部的迹线),以及差分输出(底部的迹线)。



8. 顶部迹线显示了图5a电路输出中残余的纹波电压,纹波成分主要为开关频率基波(此时为940kHz)。滤波器高于该频点的二阶滚降很好的抑制了所有高次谐波。纹波几乎只有共模分量(底部的迹线)。

本文讨论的滤波器设计均假设负载阻抗为8。音圈电感导致20kHz的频率范围内,多数宽范围动圈扬声器的阻抗变高。该特性有助于实现高效率的无滤波器工作,但选择滤波器件以降低EMI时,应考虑阻抗的上升。

试图评估和描述D类放大器特性时,为了进行器件选型和评估,即便在实验室环境下,音频设计人员也往往需要进行滤波。即使不用滤波器的最终产品能通过EMC测试,仍然可以通过放大器性能测试来发现问题。许多音频分析仪是专为测量传统音频放大器的THD+N或幅度响应而设计的,当用于测试无滤波D类放大器时往往会出现错误。图5所示电路适合用于测试(正确加载8电阻负载),但需要注意33μH的电感可能引入的非线性将限制了THD测量。气隙元件往往具有最佳的测量结果,但尺寸往往限制其在实际产品中的应用!



关键词: 采用     新的     滤波器     结构     减小     放大器     共模     输出    

共1条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]