rtthread的sensor框架存在两个版本,其中V2版的框架号称是为了解决V1对多传感器共用一颗IC的场景支持问题而设计的。由于两个sensor框架都有在使用,因此两版传感器框架都需要了解。
传感器接口
此部分源码所处位置为:\components\drivers\sensor\v1\sensor.c
从之前对rtt设备驱动套路上的结论的角度上看,要想分析对应的驱动框架,只需要在对应的框架代码中找结构体 struct rt_device_ops 便可以找到对应的对驱动层的注册接口。按照此思路找下去,sensor框架对应的注册接口为:
传感器注册接口
static char *const sensor_name_str[] = { "none", "acce_", /* Accelerometer */ "gyro_", /* Gyroscope */ "mag_", /* Magnetometer */ "temp_", /* Temperature */ "humi_", /* Relative Humidity */ "baro_", /* Barometer */ "li_", /* Ambient light */ "pr_", /* Proximity */ "hr_", /* Heart Rate */ "tvoc_", /* TVOC Level */ "noi_", /* Noise Loudness */ "step_", /* Step sensor */ "forc_", /* Force sensor */ "dust_", /* Dust sensor */ "eco2_", /* eCO2 sensor */ "gnss_", /* GPS/GNSS sensor */ "tof_", /* TOF sensor */ "spo2_", /* SpO2 sensor */ "iaq_", /* IAQ sensor */ "etoh_", /* EtOH sensor */ "bp_" /* Blood Pressure */ }; static rt_ssize_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len) { LOG_D("Undefined fetch_data"); return 0; } static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg) { LOG_D("Undefined control"); return -RT_ERROR; } static struct rt_sensor_ops local_ops = { .fetch_data = local_fetch_data, .control = local_control }; #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops rt_sensor_ops = { RT_NULL, rt_sensor_open, rt_sensor_close, rt_sensor_read, RT_NULL, rt_sensor_control }; #endif int rt_hw_sensor_register(rt_sensor_t sensor, const char *name, rt_uint32_t flag, void *data) { rt_int8_t result; rt_device_t device; RT_ASSERT(sensor != RT_NULL); char *sensor_name = RT_NULL, *device_name = RT_NULL; // 如果注册时未提供对应的ops,则使用默认ops, // 默认ops只是提供打印,告诉编程者对应的接口未实现 if (sensor->ops == RT_NULL) { sensor->ops = &local_ops; } /* 获取注册的设备驱动名字,传感器类型+传入名称 */ sensor_name = sensor_name_str[sensor->info.type]; device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name)); if (device_name == RT_NULL) { LOG_E("device_name calloc failed!"); return -RT_ERROR; } rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1); strcat(device_name, name); // 如果一个芯片存在多种传感器,则使用模组的概念,即一个模组支持多种传感器 if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL) { /* Create a mutex lock for the module */ sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_PRIO); if (sensor->module->lock == RT_NULL) { rt_free(device_name); return -RT_ERROR; } } device = &sensor->parent; #ifdef RT_USING_DEVICE_OPS device->ops = &rt_sensor_ops; #else device->init = RT_NULL; device->open = rt_sensor_open; device->close = rt_sensor_close; device->read = rt_sensor_read; device->write = RT_NULL; device->control = rt_sensor_control; #endif device->type = RT_Device_Class_Sensor; device->rx_indicate = RT_NULL; device->tx_complete = RT_NULL; device->user_data = data; result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE); if (result != RT_EOK) { LOG_E("rt_sensor[%s] register err code: %d", device_name, result); rt_free(device_name); return result; } LOG_I("rt_sensor[%s] init success", device_name); rt_free(device_name); return RT_EOK; }
在注册函数中,我们可以知道,V1的传感器框架已经支持了常见的那些传感器种类了,而且在架构设计时,已经考虑到了一颗芯片存在支持多种数据的问题。
传感器打开接口
void rt_sensor_cb(rt_sensor_t sen) { if (sen->parent.rx_indicate == RT_NULL) { return; } // 预先处理传感器数据 // 在支持中断嵌套的平台下,不少传感器驱动把数据读取和转化放在该接口中实现 if (sen->irq_handle != RT_NULL) { sen->irq_handle(sen); } /* 通过rx_indicate回调函数通知上层应用有数据,以及数据有多少,以便上层完整读取 */ if (sen->data_len > 0) { sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data)); } else if (sen->config.mode == RT_SENSOR_MODE_INT) { sen->parent.rx_indicate(&sen->parent, 1); } else if (sen->config.mode == RT_SENSOR_MODE_FIFO) { sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max); } } static void irq_callback(void *args) { rt_sensor_t sensor = (rt_sensor_t)args; rt_uint8_t i; if (sensor->module) { /* 如果是模组,由于模组只有一个中断脚,收到中断时无法区分是什么数据, 因此所有模块都通知一遍。在模块读取数据时判断是什么数据到了 */ for (i = 0; i < sensor->module->sen_num; i++) { rt_sensor_cb(sensor->module->sen[i]); } } else { rt_sensor_cb(sensor); } } static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor) { // 如果没设置中断脚,则不注册回调函数 if (sensor->config.irq_pin.pin == RT_PIN_NONE) { return -RT_EINVAL; } //不同的输入配置,设置成不同的工作模式 //设置成输入带下拉时,则使用上升沿中断处理回调 // 输入上拉时,默认使用下降沿触发 // 输入悬空,默认使用下降沿触发(缘由:大部分硬件在io口不能配上下拉时会选择外部接上拉) rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode); if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN) { rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor); } else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP) { rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor); } else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT) { rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor); } // 使能io口中断 rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE); LOG_I("interrupt init success"); return 0; } static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag) { rt_sensor_t sensor = (rt_sensor_t)dev; RT_ASSERT(dev != RT_NULL); rt_err_t res = RT_EOK; rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control; if (sensor->module) { /* 如果是模组的话,因为总线只有一个, 多线程错开访问可能会导致异常,因此需要模组锁做限制 */ rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } // 如果是模组并支持fifo模式的数据存储,而fifo对应的buffer未申请,则申请该buffer if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL) { /* Allocate memory for the sensor buffer */ sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max); if (sensor->data_buf == RT_NULL) { res = -RT_ENOMEM; goto __exit; } } // 指定对应的处理函数指针 if (sensor->ops->control != RT_NULL) { local_ctrl = sensor->ops->control; } // 默认设置未轮询模式 sensor->config.mode = RT_SENSOR_MODE_POLLING; if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY) { /* 如果支持轮询模式,则初始化成轮询模式 */ local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING); } else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX) { /* 如果支持中断模式,则初始化成中断模式并注册中断回调函数 */ if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK) { rt_sensor_irq_init(sensor); sensor->config.mode = RT_SENSOR_MODE_INT; } } else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX) { /* 如果支持fifo模式,则注册成fifo模式并注册回调函数 */ if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK) { rt_sensor_irq_init(sensor); sensor->config.mode = RT_SENSOR_MODE_FIFO; } } else { res = -RT_EINVAL; goto __exit; } /* 把传感器工作模式切换为正常工作模式 */ if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK) { sensor->config.power = RT_SENSOR_POWER_NORMAL; } __exit: if (sensor->module) { /* 操作完毕,释放模组锁 */ rt_mutex_release(sensor->module->lock); } return res; }
通过对读接口的分析,我们可以知道,上层应用使用传感器时,必须注册rx_indicate回调函数(除非使用轮询,不需要底层通知应用有新数据到达)。另外,结合注册函数,会发现v1的框架做了一些容错性设计(传感器没有定义ops时,运行时出各种打印),虽然在最终的应用中不会出问题,但能在一定程度上对适配传感器框架带来帮助。
驱动读接口
static rt_ssize_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len) { rt_sensor_t sensor = (rt_sensor_t)dev; rt_size_t result = 0; RT_ASSERT(dev != RT_NULL); if (buf == NULL || len == 0) { return 0; } if (sensor->module) { rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } /* 如果有缓存数据,则直接把缓存数据复制到缓冲区并清空缓存 */ if (sensor->data_len > 0) { if (len > sensor->data_len / sizeof(struct rt_sensor_data)) { len = sensor->data_len / sizeof(struct rt_sensor_data); } rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data)); sensor->data_len = 0; result = len; } else { /* 如果缓存数据为空,则读取数据,并放置与读取的缓冲区中 */ if (sensor->ops->fetch_data != RT_NULL) { result = sensor->ops->fetch_data(sensor, buf, len); } } if (sensor->module) { rt_mutex_release(sensor->module->lock); } return result; }
读接口,其实并没有什么特定的操作,直接对应的传感器去读取传感器的数据,由于涉及到模组的情况,因此每次读的时候都用锁做了队列,防止读冲突。
传感器控制接口
static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args) { rt_sensor_t sensor = (rt_sensor_t)dev; rt_err_t result = RT_EOK; RT_ASSERT(dev != RT_NULL); rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control; if (sensor->module) { rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } if (sensor->ops->control != RT_NULL) { local_ctrl = sensor->ops->control; } switch (cmd) { case RT_SENSOR_CTRL_GET_ID: // 获取传感器编号 if (args) { result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args); } break; case RT_SENSOR_CTRL_GET_INFO: // 获取传感器信息 if (args) { rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info)); } break; case RT_SENSOR_CTRL_SET_RANGE: // 设置传感器的测量精度或量程 result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args); if (result == RT_EOK) { sensor->config.range = (rt_int32_t)args; LOG_D("set range %d", sensor->config.range); } break; case RT_SENSOR_CTRL_SET_ODR: // 设置传感器的检测频率 result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args); if (result == RT_EOK) { sensor->config.odr = (rt_uint32_t)args & 0xFFFF; LOG_D("set odr %d", sensor->config.odr); } break; case RT_SENSOR_CTRL_SET_POWER: // 设置传感器的工作模式 result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args); if (result == RT_EOK) { sensor->config.power = (rt_uint32_t)args & 0xFF; LOG_D("set power mode code:", sensor->config.power); } break; case RT_SENSOR_CTRL_SELF_TEST: // 传感器自检,若支持的话 result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args); break; default: //若传感器有用户自定义功能,则在此下发 if (cmd > RT_SENSOR_CTRL_USER_CMD_START) { result = local_ctrl(sensor, cmd, args); } else { result = -RT_ERROR; } break; } if (sensor->module) { rt_mutex_release(sensor->module->lock); } return result; }
传感器关闭接口
static rt_err_t rt_sensor_close(rt_device_t dev) { rt_sensor_t sensor = (rt_sensor_t)dev; int i; rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control; RT_ASSERT(dev != RT_NULL); if (sensor->module) { rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } if (sensor->ops->control != RT_NULL) { local_ctrl = sensor->ops->control; } /* 传感器设置到关机状态 */ if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK) { sensor->config.power = RT_SENSOR_POWER_DOWN; } // 如果是模组,且支持fifo,此时若所有模块都关闭了,则销毁fifo缓存 if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL) { for (i = 0; i < sensor->module->sen_num; i ++) { if (sensor->module->sen[i]->parent.ref_count > 0) goto __exit; } for (i = 0; i < sensor->module->sen_num; i ++) { if (sensor->module->sen[i]->data_buf != RT_NULL) { rt_free(sensor->module->sen[i]->data_buf); sensor->module->sen[i]->data_buf = RT_NULL; } } } // 如果非轮询模式,则对应的注销中断回调处理 if (sensor->config.mode != RT_SENSOR_MODE_POLLING) { if (sensor->config.irq_pin.pin != RT_PIN_NONE) { rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE); } } __exit: if (sensor->module) { rt_mutex_release(sensor->module->lock); } return RT_EOK; }
传感器关闭接口的实现,看起来挺简单,仅仅是通知驱动切换到power down模式,并销毁对应的资源。这也是和打开接口逻辑一一对应的地方。
总结
至此,传感器驱动对接应用的部分就分析完毕了,通过对此部分的分析,我们会发现,应用层要用传感器,实际上仅仅需要打开对应功能的传感器,设置好量程,频率,若需要非轮询的功能,则注册回调函数获取底层以采集的数据量。便可实现传感器的使用。
而从上面的分析,我们也大致能看出V1的传感器框架对驱动适配的要求,这个在后面的传感器驱动分析再细讲,即:
#include <drivers/sensor.h> struct sensor_device { // driver Param }; static rt_size_t _polling_get_data(rt_sensor_t sensor, struct rt_sensor_data *data) { struct sensor_device *dev = sensor->parent.user_data; if (sensor->info.type == RT_SENSOR_CLASS_NONE) { // TODO: Read and fill data to struct rt_sensor_data *data return 1; } return 0; } static rt_size_t _get_data(rt_sensor_t sensor, struct rt_sensor_data *data) { struct sensor_device *dev = sensor->parent.user_data; if (sensor->info.type == RT_SENSOR_CLASS_NONE) { // TODO: Read and fill data to struct rt_sensor_data *data return 1; } return 0; } static rt_size_t fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len) { RT_ASSERT(buf); if (sensor->config.mode == RT_SENSOR_MODE_POLLING) return _polling_get_data(sensor, buf); else return _get_data(sensor, buf); } static rt_err_t control(struct rt_sensor_device *sensor, int cmd, void *args) { rt_err_t result = RT_EOK; switch (cmd) { case RT_SENSOR_CTRL_GET_ID: // TODO: get device id // result = xxxx(sensor, args); break; case RT_SENSOR_CTRL_SET_RANGE: // TODO: set test range // result = xxxx(sensor, args); break; case RT_SENSOR_CTRL_SET_ODR: // TODO: set frequency // result = xxxx(sensor, args); break; case RT_SENSOR_CTRL_SET_MODE: // TODO: set work mode // result = xxxx(sensor, args); break; case RT_SENSOR_CTRL_SET_POWER: // TODO: set power mode // result = xxxx(sensor, args); break; case RT_SENSOR_CTRL_SELF_TEST: // TODO: process self test // result = xxxx(sensor); break; default: return -RT_ERROR; } return result; } static struct rt_sensor_ops sensor_ops = { fetch_data, control }; int rt_hw_init(const char *name, struct rt_sensor_config *cfg) { rt_int8_t result; rt_sensor_t sensor = RT_NULL; struct sensor_device *dev; // TODO: dev init /* sensor register */ sensor = rt_calloc(1, sizeof(struct rt_sensor_device)); if (sensor == RT_NULL) goto __exit; sensor->info.type = RT_SENSOR_CLASS_NONE; // Set real type sensor->info.vendor = RT_SENSOR_VENDOR_UNKNOWN; // Set real vendor sensor->info.model = "xxxx"; // set real model name sensor->info.unit = RT_SENSOR_UNIT_NONE; // set to real unit flag sensor->info.intf_type = RT_SENSOR_INTF_SPI; // Set interface type sensor->info.range_max = SENSOR_RANGE_MAX; // Set to range max sensor->info.range_min = SENSOR_RANGE_MIN; // Set to range min sensor->info.period_min = 50; // Set frequency rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config)); sensor->ops = &sensor_ops; result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDONLY, dev); if (result != RT_EOK) { goto __exit; } return RT_EOK; __exit: if (sensor) rt_free(sensor); // TODO: dev deinit return -RT_ERROR; }