这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 嵌入式开发 » 软件与操作系统 » rtthread sensor V1 框架分析

共2条 1/1 1 跳转至

rtthread sensor V1 框架分析

工程师
2025-02-18 22:37:05     打赏

       rtthread的sensor框架存在两个版本,其中V2版的框架号称是为了解决V1对多传感器共用一颗IC的场景支持问题而设计的。由于两个sensor框架都有在使用,因此两版传感器框架都需要了解。

传感器接口

    此部分源码所处位置为:\components\drivers\sensor\v1\sensor.c

       从之前对rtt设备驱动套路上的结论的角度上看,要想分析对应的驱动框架,只需要在对应的框架代码中找结构体 struct rt_device_ops 便可以找到对应的对驱动层的注册接口。按照此思路找下去,sensor框架对应的注册接口为:

传感器注册接口

static char *const sensor_name_str[] =
{
    "none",
    "acce_",     /* Accelerometer     */
    "gyro_",     /* Gyroscope         */
    "mag_",      /* Magnetometer      */
    "temp_",     /* Temperature       */
    "humi_",     /* Relative Humidity */
    "baro_",     /* Barometer         */
    "li_",       /* Ambient light     */
    "pr_",       /* Proximity         */
    "hr_",       /* Heart Rate        */
    "tvoc_",     /* TVOC Level        */
    "noi_",      /* Noise Loudness    */
    "step_",     /* Step sensor       */
    "forc_",     /* Force sensor      */
    "dust_",     /* Dust sensor       */
    "eco2_",     /* eCO2 sensor       */
    "gnss_",     /* GPS/GNSS sensor   */
    "tof_",      /* TOF sensor        */
    "spo2_",     /* SpO2 sensor       */
    "iaq_",      /* IAQ sensor        */
    "etoh_",     /* EtOH sensor       */
    "bp_"        /* Blood Pressure    */
};

static rt_ssize_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
{
    LOG_D("Undefined fetch_data");
    return 0;
}
static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg)
{
    LOG_D("Undefined control");
    return -RT_ERROR;
}
static struct rt_sensor_ops local_ops =
{
    .fetch_data = local_fetch_data,
    .control = local_control
};

#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops rt_sensor_ops =
{
    RT_NULL,
    rt_sensor_open,
    rt_sensor_close,
    rt_sensor_read,
    RT_NULL,
    rt_sensor_control
};
#endif

int rt_hw_sensor_register(rt_sensor_t sensor,
                          const char              *name,
                          rt_uint32_t              flag,
                          void                    *data)
{
    rt_int8_t result;
    rt_device_t device;
    RT_ASSERT(sensor != RT_NULL);

    char *sensor_name = RT_NULL, *device_name = RT_NULL;

    // 如果注册时未提供对应的ops,则使用默认ops,
    // 默认ops只是提供打印,告诉编程者对应的接口未实现
    if (sensor->ops == RT_NULL)
    {
        sensor->ops = &local_ops;
    }

    /* 获取注册的设备驱动名字,传感器类型+传入名称 */
    sensor_name = sensor_name_str[sensor->info.type];
    device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
    if (device_name == RT_NULL)
    {
        LOG_E("device_name calloc failed!");
        return -RT_ERROR;
    }

    rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
    strcat(device_name, name);

    // 如果一个芯片存在多种传感器,则使用模组的概念,即一个模组支持多种传感器
    if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
    {
        /* Create a mutex lock for the module */
        sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
        if (sensor->module->lock == RT_NULL)
        {
            rt_free(device_name);
            return -RT_ERROR;
        }
    }

    device = &sensor->parent;

#ifdef RT_USING_DEVICE_OPS
    device->ops         = &rt_sensor_ops;
#else
    device->init        = RT_NULL;
    device->open        = rt_sensor_open;
    device->close       = rt_sensor_close;
    device->read        = rt_sensor_read;
    device->write       = RT_NULL;
    device->control     = rt_sensor_control;
#endif
    device->type        = RT_Device_Class_Sensor;
    device->rx_indicate = RT_NULL;
    device->tx_complete = RT_NULL;
    device->user_data   = data;

    result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
    if (result != RT_EOK)
    {
        LOG_E("rt_sensor[%s] register err code: %d", device_name, result);
        rt_free(device_name);
        return result;
    }

    LOG_I("rt_sensor[%s] init success", device_name);
    rt_free(device_name);
    return RT_EOK;
}

     在注册函数中,我们可以知道,V1的传感器框架已经支持了常见的那些传感器种类了,而且在架构设计时,已经考虑到了一颗芯片存在支持多种数据的问题。

传感器打开接口

void rt_sensor_cb(rt_sensor_t sen)
{
    if (sen->parent.rx_indicate == RT_NULL)
    {
        return;
    }

    // 预先处理传感器数据
    // 在支持中断嵌套的平台下,不少传感器驱动把数据读取和转化放在该接口中实现
    if (sen->irq_handle != RT_NULL)
    {
        sen->irq_handle(sen);
    }

    /* 通过rx_indicate回调函数通知上层应用有数据,以及数据有多少,以便上层完整读取 */
    if (sen->data_len > 0)
    {
        sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
    }
    else if (sen->config.mode == RT_SENSOR_MODE_INT)
    {
        sen->parent.rx_indicate(&sen->parent, 1);
    }
    else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
    {
        sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
    }
}

static void irq_callback(void *args)
{
    rt_sensor_t sensor = (rt_sensor_t)args;
    rt_uint8_t i;

    if (sensor->module)
    {
        /* 如果是模组,由于模组只有一个中断脚,收到中断时无法区分是什么数据,
           因此所有模块都通知一遍。在模块读取数据时判断是什么数据到了 */
        for (i = 0; i < sensor->module->sen_num; i++)
        {
            rt_sensor_cb(sensor->module->sen[i]);
        }
    }
    else
    {
        rt_sensor_cb(sensor);
    }
}

static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
{
    // 如果没设置中断脚,则不注册回调函数
    if (sensor->config.irq_pin.pin == RT_PIN_NONE)
    {
        return -RT_EINVAL;
    }

    //不同的输入配置,设置成不同的工作模式
    //设置成输入带下拉时,则使用上升沿中断处理回调
    // 输入上拉时,默认使用下降沿触发
    // 输入悬空,默认使用下降沿触发(缘由:大部分硬件在io口不能配上下拉时会选择外部接上拉)
    rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);

    if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
    {
        rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
    }
    else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
    {
        rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
    }
    else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
    {
        rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
    }

    // 使能io口中断
    rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);

    LOG_I("interrupt init success");

    return 0;
}

static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
{
    rt_sensor_t sensor = (rt_sensor_t)dev;
    RT_ASSERT(dev != RT_NULL);
    rt_err_t res = RT_EOK;
    rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) =  local_control;

    if (sensor->module)
    {
        /* 如果是模组的话,因为总线只有一个,
        多线程错开访问可能会导致异常,因此需要模组锁做限制 */
        rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
    }

    // 如果是模组并支持fifo模式的数据存储,而fifo对应的buffer未申请,则申请该buffer
    if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
    {
        /* Allocate memory for the sensor buffer */
        sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
        if (sensor->data_buf == RT_NULL)
        {
            res = -RT_ENOMEM;
            goto __exit;
        }
    }
    // 指定对应的处理函数指针
    if (sensor->ops->control != RT_NULL)
    {
        local_ctrl = sensor->ops->control;
    }

    // 默认设置未轮询模式
    sensor->config.mode = RT_SENSOR_MODE_POLLING;
    if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
    {
        /* 如果支持轮询模式,则初始化成轮询模式 */
        local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
    }
    else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
    {
        /* 如果支持中断模式,则初始化成中断模式并注册中断回调函数 */
        if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
        {
            rt_sensor_irq_init(sensor);
            sensor->config.mode = RT_SENSOR_MODE_INT;
        }
    }
    else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
    {
        /* 如果支持fifo模式,则注册成fifo模式并注册回调函数 */
        if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
        {
            rt_sensor_irq_init(sensor);
            sensor->config.mode = RT_SENSOR_MODE_FIFO;
        }
    }
    else
    {
        res = -RT_EINVAL;
        goto __exit;
    }

    /* 把传感器工作模式切换为正常工作模式 */
    if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
    {
        sensor->config.power = RT_SENSOR_POWER_NORMAL;
    }

__exit:
    if (sensor->module)
    {
        /* 操作完毕,释放模组锁 */
        rt_mutex_release(sensor->module->lock);
    }

    return res;
}

   通过对读接口的分析,我们可以知道,上层应用使用传感器时,必须注册rx_indicate回调函数(除非使用轮询,不需要底层通知应用有新数据到达)。另外,结合注册函数,会发现v1的框架做了一些容错性设计(传感器没有定义ops时,运行时出各种打印),虽然在最终的应用中不会出问题,但能在一定程度上对适配传感器框架带来帮助。

驱动读接口

static rt_ssize_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
{
    rt_sensor_t sensor = (rt_sensor_t)dev;
    rt_size_t result = 0;
    RT_ASSERT(dev != RT_NULL);

    if (buf == NULL || len == 0)
    {
        return 0;
    }

    if (sensor->module)
    {
        rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
    }

    /* 如果有缓存数据,则直接把缓存数据复制到缓冲区并清空缓存 */
    if (sensor->data_len > 0)
    {
        if (len > sensor->data_len / sizeof(struct rt_sensor_data))
        {
            len = sensor->data_len / sizeof(struct rt_sensor_data);
        }

        rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));

        sensor->data_len = 0;
        result = len;
    }
    else
    {
        /* 如果缓存数据为空,则读取数据,并放置与读取的缓冲区中 */
        if (sensor->ops->fetch_data !=  RT_NULL)
        {
            result = sensor->ops->fetch_data(sensor, buf, len);
        }
    }

    if (sensor->module)
    {
        rt_mutex_release(sensor->module->lock);
    }

    return result;
}

     读接口,其实并没有什么特定的操作,直接对应的传感器去读取传感器的数据,由于涉及到模组的情况,因此每次读的时候都用锁做了队列,防止读冲突。

传感器控制接口

static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
{
    rt_sensor_t sensor = (rt_sensor_t)dev;
    rt_err_t result = RT_EOK;
    RT_ASSERT(dev != RT_NULL);
    rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;

    if (sensor->module)
    {
        rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
    }
    if (sensor->ops->control != RT_NULL)
    {
        local_ctrl = sensor->ops->control;
    }

    switch (cmd)
    {
    case RT_SENSOR_CTRL_GET_ID: // 获取传感器编号
        if (args)
        {
            result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args);
        }
        break;
    case RT_SENSOR_CTRL_GET_INFO: // 获取传感器信息
        if (args)
        {
            rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
        }
        break;
    case RT_SENSOR_CTRL_SET_RANGE:  // 设置传感器的测量精度或量程
        result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
        if (result == RT_EOK)
        {
            sensor->config.range = (rt_int32_t)args;
            LOG_D("set range %d", sensor->config.range);
        }
        break;
    case RT_SENSOR_CTRL_SET_ODR: // 设置传感器的检测频率
        result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args);
        if (result == RT_EOK)
        {
            sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
            LOG_D("set odr %d", sensor->config.odr);
        }
        break;
    case RT_SENSOR_CTRL_SET_POWER: // 设置传感器的工作模式
        result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args);
        if (result == RT_EOK)
        {
            sensor->config.power = (rt_uint32_t)args & 0xFF;
            LOG_D("set power mode code:", sensor->config.power);
        }
        break;
    case RT_SENSOR_CTRL_SELF_TEST:    // 传感器自检,若支持的话
        result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
        break;
    default:
        //若传感器有用户自定义功能,则在此下发
        if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
        {
            result = local_ctrl(sensor, cmd, args);
        }
        else
        {
            result = -RT_ERROR;
        }
        break;
    }

    if (sensor->module)
    {
        rt_mutex_release(sensor->module->lock);
    }

    return result;
}

传感器关闭接口

static rt_err_t rt_sensor_close(rt_device_t dev)
{
    rt_sensor_t sensor = (rt_sensor_t)dev;
    int i;
    rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;

    RT_ASSERT(dev != RT_NULL);

    if (sensor->module)
    {
        rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
    }
    if (sensor->ops->control != RT_NULL)
    {
        local_ctrl = sensor->ops->control;
    }

    /* 传感器设置到关机状态 */
    if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
    {
        sensor->config.power = RT_SENSOR_POWER_DOWN;
    }

    // 如果是模组,且支持fifo,此时若所有模块都关闭了,则销毁fifo缓存
    if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
    {
        for (i = 0; i < sensor->module->sen_num; i ++)
        {
            if (sensor->module->sen[i]->parent.ref_count > 0)
                goto __exit;
        }

        for (i = 0; i < sensor->module->sen_num; i ++)
        {
            if (sensor->module->sen[i]->data_buf != RT_NULL)
            {
                rt_free(sensor->module->sen[i]->data_buf);
                sensor->module->sen[i]->data_buf = RT_NULL;
            }
        }
    }
    // 如果非轮询模式,则对应的注销中断回调处理
    if (sensor->config.mode != RT_SENSOR_MODE_POLLING)
    {
        if (sensor->config.irq_pin.pin != RT_PIN_NONE)
        {
            rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
        }
    }

__exit:
    if (sensor->module)
    {
        rt_mutex_release(sensor->module->lock);
    }

    return RT_EOK;
}

     传感器关闭接口的实现,看起来挺简单,仅仅是通知驱动切换到power down模式,并销毁对应的资源。这也是和打开接口逻辑一一对应的地方。

总结

      至此,传感器驱动对接应用的部分就分析完毕了,通过对此部分的分析,我们会发现,应用层要用传感器,实际上仅仅需要打开对应功能的传感器,设置好量程,频率,若需要非轮询的功能,则注册回调函数获取底层以采集的数据量。便可实现传感器的使用。 

      而从上面的分析,我们也大致能看出V1的传感器框架对驱动适配的要求,这个在后面的传感器驱动分析再细讲,即:

#include <drivers/sensor.h>
 
struct sensor_device {
    // driver Param
};

static rt_size_t _polling_get_data(rt_sensor_t sensor, struct rt_sensor_data *data)
{
    struct sensor_device *dev = sensor->parent.user_data;

    if (sensor->info.type == RT_SENSOR_CLASS_NONE)
    {
        // TODO: Read and fill data to struct rt_sensor_data *data
        return 1;
    }
    
    return 0;
}

static rt_size_t _get_data(rt_sensor_t sensor, struct rt_sensor_data *data)
{
    struct sensor_device *dev = sensor->parent.user_data;

    if (sensor->info.type == RT_SENSOR_CLASS_NONE)
    {
        // TODO: Read and fill data to struct rt_sensor_data *data
        return 1;
    }
    
    return 0;
}

static rt_size_t fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
{
    RT_ASSERT(buf);

    if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
        return _polling_get_data(sensor, buf);
    else
        return _get_data(sensor, buf);
}

static rt_err_t control(struct rt_sensor_device *sensor, int cmd, void *args)
{
    rt_err_t result = RT_EOK;
    
    switch (cmd)
    {
    
        case RT_SENSOR_CTRL_GET_ID:
            // TODO:  get device id
            // result = xxxx(sensor, args);
            break;
        case RT_SENSOR_CTRL_SET_RANGE:
            // TODO: set test range
            // result = xxxx(sensor, args);
            break;
        case RT_SENSOR_CTRL_SET_ODR:
            // TODO: set frequency
            // result = xxxx(sensor, args);
            break;
        case RT_SENSOR_CTRL_SET_MODE:
            // TODO: set work mode
            // result = xxxx(sensor, args);
            break;
        case RT_SENSOR_CTRL_SET_POWER:
            // TODO: set power mode
            // result = xxxx(sensor, args);
            break;

        case RT_SENSOR_CTRL_SELF_TEST:
            // TODO: process self test
            // result = xxxx(sensor);
            break;
        default:
            return -RT_ERROR;
    }
    
    return result;
}

static struct rt_sensor_ops sensor_ops =
{
    fetch_data,
    control
};

int rt_hw_init(const char *name, struct rt_sensor_config *cfg)
{
    rt_int8_t result;
    rt_sensor_t sensor = RT_NULL; 
    struct sensor_device *dev;

    // TODO: dev init
    
    /* sensor register */
    sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
    if (sensor == RT_NULL)
        goto __exit;
    
    sensor->info.type       = RT_SENSOR_CLASS_NONE; // Set real type
    sensor->info.vendor     = RT_SENSOR_VENDOR_UNKNOWN; // Set real vendor
    sensor->info.model      = "xxxx";  // set real model name
    sensor->info.unit       = RT_SENSOR_UNIT_NONE; // set to real unit flag
    sensor->info.intf_type  = RT_SENSOR_INTF_SPI; // Set interface type
    sensor->info.range_max  = SENSOR_RANGE_MAX; // Set to range max
    sensor->info.range_min  = SENSOR_RANGE_MIN; // Set to range min
    sensor->info.period_min = 50; // Set frequency

    rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
    sensor->ops = &sensor_ops;

    result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDONLY, dev);
    if (result != RT_EOK)
    {
        goto __exit;
    }

    return RT_EOK;

__exit:
    if (sensor)
        rt_free(sensor);
    // TODO: dev deinit
    return -RT_ERROR;
}





关键词: rtthread     sensor     框架     分析     传感器    

专家
2025-02-19 20:07:43     打赏
2楼

感谢分享


共2条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]