简介
上一个章节中我们已经点亮了SSD1306的屏幕并且进行了输出测试。 那么在本章节我们将驱动max30102. 并且将数据显示在SSD1306的屏幕上。 这个传感器的驱动倒是也好写。但是麻烦的是计算数据。计算数据的话自己写算法是一件十分复杂的事情。我的这个计算方式是从GITHUB中找到的算法计算代码。原本是C++的版本,我把它简单的修改了一下就变成C语言的版本了。
对于MAX30102的读取比较简单。首先定义各种需要用到的寄存器
// ---------- MAX30102 寄存器 ---------- #define MAX30102_ADDR 0x57 // 7-bit I2C 地址 #define REG_INT_STATUS_1 0x00 #define REG_INT_ENABLE_1 0x02 #define REG_FIFO_WR_PTR 0x04 #define REG_OVF_COUNTER 0x05 #define REG_FIFO_RD_PTR 0x06 #define REG_FIFO_DATA 0x07 #define REG_MODE_CONFIG 0x09 #define REG_SPO2_CONFIG 0x0A #define REG_LED1_PA 0x0C // RED LED #define REG_LED2_PA 0x0D // IR LED #define REG_TEMP_INTEGER 0x1F #define REG_TEMP_FRACTION 0x20 #define REG_PART_ID 0xFF #define MA4_SIZE 4 #define HAMMING_SIZE 5 uint32_t red_buffer[BUFFER_SIZE]; uint32_t ir_buffer[BUFFER_SIZE]; int buffer_index = 0;
以及封装一下原本的I2C函数
// ---------------- I2C 基础读写函数 ---------------- int max30102_write_reg(uint8_t reg, uint8_t value) { uint8_t data[2] = {reg, value}; mxc_i2c_req_t req; req.i2c = I2C_INST; req.addr = MAX30102_ADDR; req.tx_buf = data; req.tx_len = 2; req.rx_buf = NULL; req.rx_len = 0; req.restart = 0; req.callback = NULL; return MXC_I2C_MasterTransaction(&req); } int max30102_read_reg(uint8_t reg, uint8_t *value) { mxc_i2c_req_t req; int err; req.i2c = I2C_INST; req.addr = MAX30102_ADDR; req.tx_buf = ® req.tx_len = 1; req.rx_buf = NULL; req.rx_len = 0; req.restart = 1; // Repeated START req.callback = NULL; err = MXC_I2C_MasterTransaction(&req); if (err != E_NO_ERROR) return err; req.tx_buf = NULL; req.tx_len = 0; req.rx_buf = value; req.rx_len = 1; req.restart = 0; req.callback = NULL; return MXC_I2C_MasterTransaction(&req); } int max30102_read_multi(uint8_t reg, uint8_t *buf, int len) { mxc_i2c_req_t req; int err; req.i2c = I2C_INST; req.addr = MAX30102_ADDR; req.tx_buf = ® req.tx_len = 1; req.rx_buf = NULL; req.rx_len = 0; req.restart = 1; req.callback = NULL; err = MXC_I2C_MasterTransaction(&req); if (err != E_NO_ERROR) return err; req.tx_buf = NULL; req.tx_len = 0; req.rx_buf = buf; req.rx_len = len; req.restart = 0; req.callback = NULL; return MXC_I2C_MasterTransaction(&req); }
MAX30102的初始化,其主要作用为初始化寄存器等。
int max30102_init(void) { int ret; uint8_t part_id; MXC_I2C_Shutdown(I2C_INST); MXC_I2C_Init(I2C_INST, 1, 0); // master mode MXC_I2C_SetFrequency(I2C_INST, 400000); // 400kHz ret = max30102_read_reg(REG_PART_ID, &part_id); if (ret != E_NO_ERROR) { printf("I2C read failed\n"); return ret; } if (part_id != 0x15) { printf("MAX30102 not found! Part ID: 0x%02X\n", part_id); return -1; } printf("MAX30102 detected, Part ID: 0x%02X\n", part_id); max30102_write_reg(REG_MODE_CONFIG, 0x40); MXC_Delay(MXC_DELAY_MSEC(10)); max30102_write_reg(REG_MODE_CONFIG, 0x03); // SpO2 模式 max30102_write_reg(REG_SPO2_CONFIG, 0x27); // 18-bit, 100Hz max30102_write_reg(REG_LED1_PA, 0x24); // 红光 ~7mA max30102_write_reg(REG_LED2_PA, 0x24); // IR ~7mA return 0; }
然后从FIFO读取数据即可。
// ---------------- 读取 FIFO 数据 ---------------- int max30102_read_fifo(uint32_t *red, uint32_t *ir) { uint8_t buf[6]; int ret = max30102_read_multi(REG_FIFO_DATA, buf, 6); if (ret != E_NO_ERROR) return ret; *red = ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2]; *ir = ((uint32_t)buf[3] << 16) | ((uint32_t)buf[4] << 8) | buf[5]; *red &= 0x3FFFF; // 18-bit *ir &= 0x3FFFF; return 0; }
上述的代码就已经可以完整的驱动起来这个传感器了。但是此时读取到的数据并不是血氧和心跳,而是原始的数据。所以如果需要读取心跳血氧数据的话需要进行转换。而这个算法好像还是保密的,我在GIThub上找到了一个C++的版本。所幸不需要很多修改即可。
我修改后的头文件如下所示
#ifndef ALGORITHM_H_ #define ALGORITHM_H_ #include <stdint.h> #define true 1 #define false 0 #define FS 100 #define BUFFER_SIZE (FS * 8) #define HR_FIFO_SIZE 7 #define MA4_SIZE 4 // DO NOT CHANGE #define HAMMING_SIZE 5 // DO NOT CHANGE #define min(x, y) ((x) < (y) ? (x) : (y)) // ====== 只声明,不定义 ====== extern const uint16_t auw_hamm[HAMMING_SIZE]; extern const uint8_t uch_spo2_table[184]; extern int32_t an_dx[BUFFER_SIZE - MA4_SIZE]; extern int32_t an_x[BUFFER_SIZE]; extern int32_t an_y[BUFFER_SIZE]; // ====== 函数声明 ====== void maxim_heart_rate_and_oxygen_saturation( uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, int32_t *pn_heart_rate, int8_t *pch_hr_valid); void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num); void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height); void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance); void maxim_sort_ascend(int32_t *pn_x, int32_t n_size); void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size); #endif /* ALGORITHM_H_ */
源文件
/** \file algorithm.cpp ****************************************************** * * Project: MAXREFDES117# * Filename: algorithm.cpp * Description: This module calculates the heart rate/SpO2 level * * * -------------------------------------------------------------------- * * This code follows the following naming conventions: * * char ch_pmod_value * char (array) s_pmod_s_string[16] * float f_pmod_value * int32_t n_pmod_value * int32_t (array) an_pmod_value[16] * int16_t w_pmod_value * int16_t (array) aw_pmod_value[16] * uint16_t uw_pmod_value * uint16_t (array) auw_pmod_value[16] * uint8_t uch_pmod_value * uint8_t (array) auch_pmod_buffer[16] * uint32_t un_pmod_value * int32_t * pn_pmod_value * * ------------------------------------------------------------------------- */ /******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #include "algorithm.h" // Hamming 窗口 const uint16_t auw_hamm[HAMMING_SIZE] = {41, 276, 512, 276, 41}; // SpO2 查表 const uint8_t uch_spo2_table[184] = { 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67, 66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5, 3, 2, 1}; // 这里才是真正定义(全局唯一) int32_t an_dx[BUFFER_SIZE - MA4_SIZE]; int32_t an_x[BUFFER_SIZE]; int32_t an_y[BUFFER_SIZE]; void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, int32_t *pn_heart_rate, int8_t *pch_hr_valid) /** * \brief Calculate the heart rate and SpO2 level * \par Details * By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed. * Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow. * Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio. * * \param[in] *pun_ir_buffer - IR sensor data buffer * \param[in] n_ir_buffer_length - IR sensor data buffer length * \param[in] *pun_red_buffer - Red sensor data buffer * \param[out] *pn_spo2 - Calculated SpO2 value * \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid * \param[out] *pn_heart_rate - Calculated heart rate value * \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid * * \retval None */ { uint32_t un_ir_mean, un_only_once; int32_t k, n_i_ratio_count; int32_t i, s, m, n_exact_ir_valley_locs_count, n_middle_idx; int32_t n_th1, n_npks, n_c_min; int32_t an_ir_valley_locs[15]; int32_t an_exact_ir_valley_locs[15]; int32_t an_dx_peak_locs[15]; int32_t n_peak_interval_sum; int32_t n_y_ac, n_x_ac; int32_t n_spo2_calc; int32_t n_y_dc_max, n_x_dc_max; int32_t n_y_dc_max_idx, n_x_dc_max_idx; int32_t an_ratio[5], n_ratio_average; int32_t n_nume, n_denom; // remove DC of ir signal un_ir_mean = 0; for (k = 0; k < n_ir_buffer_length; k++) un_ir_mean += pun_ir_buffer[k]; un_ir_mean = un_ir_mean / n_ir_buffer_length; for (k = 0; k < n_ir_buffer_length; k++) an_x[k] = pun_ir_buffer[k] - un_ir_mean; // 4 pt Moving Average for (k = 0; k < BUFFER_SIZE - MA4_SIZE; k++) { n_denom = (an_x[k] + an_x[k + 1] + an_x[k + 2] + an_x[k + 3]); an_x[k] = n_denom / (int32_t)4; } // get difference of smoothed IR signal for (k = 0; k < BUFFER_SIZE - MA4_SIZE - 1; k++) an_dx[k] = (an_x[k + 1] - an_x[k]); // 2-pt Moving Average to an_dx for (k = 0; k < BUFFER_SIZE - MA4_SIZE - 2; k++) { an_dx[k] = (an_dx[k] + an_dx[k + 1]) / 2; } // hamming window // flip wave form so that we can detect valley with peak detector for (i = 0; i < BUFFER_SIZE - HAMMING_SIZE - MA4_SIZE - 2; i++) { s = 0; for (k = i; k < i + HAMMING_SIZE; k++) { s -= an_dx[k] * auw_hamm[k - i]; } an_dx[i] = s / (int32_t)1146; // divide by sum of auw_hamm } n_th1 = 0; // threshold calculation for (k = 0; k < BUFFER_SIZE - HAMMING_SIZE; k++) { n_th1 += ((an_dx[k] > 0) ? an_dx[k] : ((int32_t)0 - an_dx[k])); } n_th1 = n_th1 / (BUFFER_SIZE - HAMMING_SIZE); // peak location is acutally index for sharpest location of raw signal since we flipped the signal maxim_find_peaks(an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE - HAMMING_SIZE, n_th1, 8, 5); // peak_height, peak_distance, max_num_peaks n_peak_interval_sum = 0; if (n_npks >= 2) { for (k = 1; k < n_npks; k++) n_peak_interval_sum += (an_dx_peak_locs[k] - an_dx_peak_locs[k - 1]); n_peak_interval_sum = n_peak_interval_sum / (n_npks - 1); *pn_heart_rate = (int32_t)(6000 / n_peak_interval_sum); // beats per minutes *pch_hr_valid = 1; } else { *pn_heart_rate = -999; *pch_hr_valid = 0; } for (k = 0; k < n_npks; k++) an_ir_valley_locs[k] = an_dx_peak_locs[k] + HAMMING_SIZE / 2; // raw value : RED(=y) and IR(=X) // we need to assess DC and AC value of ir and red PPG. for (k = 0; k < n_ir_buffer_length; k++) { an_x[k] = pun_ir_buffer[k]; an_y[k] = pun_red_buffer[k]; } // find precise min near an_ir_valley_locs n_exact_ir_valley_locs_count = 0; for (k = 0; k < n_npks; k++) { un_only_once = 1; m = an_ir_valley_locs[k]; n_c_min = 16777216; // 2^24; if (m + 5 < BUFFER_SIZE - HAMMING_SIZE && m - 5 > 0) { for (i = m - 5; i < m + 5; i++) if (an_x[i] < n_c_min) { if (un_only_once > 0) { un_only_once = 0; } n_c_min = an_x[i]; an_exact_ir_valley_locs[k] = i; } if (un_only_once == 0) n_exact_ir_valley_locs_count++; } } if (n_exact_ir_valley_locs_count < 2) { *pn_spo2 = -999; // do not use SPO2 since signal ratio is out of range *pch_spo2_valid = 0; return; } // 4 pt MA for (k = 0; k < BUFFER_SIZE - MA4_SIZE; k++) { an_x[k] = (an_x[k] + an_x[k + 1] + an_x[k + 2] + an_x[k + 3]) / (int32_t)4; an_y[k] = (an_y[k] + an_y[k + 1] + an_y[k + 2] + an_y[k + 3]) / (int32_t)4; } // using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio // finding AC/DC maximum of raw ir * red between two valley locations n_ratio_average = 0; n_i_ratio_count = 0; for (k = 0; k < 5; k++) an_ratio[k] = 0; for (k = 0; k < n_exact_ir_valley_locs_count; k++) { if (an_exact_ir_valley_locs[k] > BUFFER_SIZE) { *pn_spo2 = -999; // do not use SPO2 since valley loc is out of range *pch_spo2_valid = 0; return; } } // find max between two valley locations // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 for (k = 0; k < n_exact_ir_valley_locs_count - 1; k++) { n_y_dc_max = -16777216; n_x_dc_max = -16777216; if (an_exact_ir_valley_locs[k + 1] - an_exact_ir_valley_locs[k] > 10) { for (i = an_exact_ir_valley_locs[k]; i < an_exact_ir_valley_locs[k + 1]; i++) { if (an_x[i] > n_x_dc_max) { n_x_dc_max = an_x[i]; n_x_dc_max_idx = i; } if (an_y[i] > n_y_dc_max) { n_y_dc_max = an_y[i]; n_y_dc_max_idx = i; } } n_y_ac = (an_y[an_exact_ir_valley_locs[k + 1]] - an_y[an_exact_ir_valley_locs[k]]) * (n_y_dc_max_idx - an_exact_ir_valley_locs[k]); // red n_y_ac = an_y[an_exact_ir_valley_locs[k]] + n_y_ac / (an_exact_ir_valley_locs[k + 1] - an_exact_ir_valley_locs[k]); n_y_ac = an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw n_x_ac = (an_x[an_exact_ir_valley_locs[k + 1]] - an_x[an_exact_ir_valley_locs[k]]) * (n_x_dc_max_idx - an_exact_ir_valley_locs[k]); // ir n_x_ac = an_x[an_exact_ir_valley_locs[k]] + n_x_ac / (an_exact_ir_valley_locs[k + 1] - an_exact_ir_valley_locs[k]); n_x_ac = an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw n_nume = (n_y_ac * n_x_dc_max) >> 7; // prepare X100 to preserve floating value n_denom = (n_x_ac * n_y_dc_max) >> 7; if (n_denom > 0 && n_i_ratio_count < 5 && n_nume != 0) { an_ratio[n_i_ratio_count] = (n_nume * 100) / n_denom; // formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ; n_i_ratio_count++; } } } maxim_sort_ascend(an_ratio, n_i_ratio_count); n_middle_idx = n_i_ratio_count / 2; if (n_middle_idx > 1) n_ratio_average = (an_ratio[n_middle_idx - 1] + an_ratio[n_middle_idx]) / 2; // use median else n_ratio_average = an_ratio[n_middle_idx]; if (n_ratio_average > 2 && n_ratio_average < 184) { n_spo2_calc = uch_spo2_table[n_ratio_average]; *pn_spo2 = n_spo2_calc; *pch_spo2_valid = 1; // float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table } else { *pn_spo2 = -999; // do not use SPO2 since signal ratio is out of range *pch_spo2_valid = 0; } } void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num) /** * \brief Find peaks * \par Details * Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE * * \retval None */ { maxim_peaks_above_min_height(pn_locs, pn_npks, pn_x, n_size, n_min_height); maxim_remove_close_peaks(pn_locs, pn_npks, pn_x, n_min_distance); *pn_npks = min(*pn_npks, n_max_num); } void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height) /** * \brief Find peaks above n_min_height * \par Details * Find all peaks above MIN_HEIGHT * * \retval None */ { int32_t i = 1, n_width; *pn_npks = 0; while (i < n_size - 1) { if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i - 1]) { // find left edge of potential peaks n_width = 1; while (i + n_width < n_size && pn_x[i] == pn_x[i + n_width]) // find flat peaks n_width++; if (pn_x[i] > pn_x[i + n_width] && (*pn_npks) < 15) { // find right edge of peaks pn_locs[(*pn_npks)++] = i; // for flat peaks, peak location is left edge i += n_width + 1; } else i += n_width; } else i++; } } void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance) /** * \brief Remove peaks * \par Details * Remove peaks separated by less than MIN_DISTANCE * * \retval None */ { int32_t i, j, n_old_npks, n_dist; /* Order peaks from large to small */ maxim_sort_indices_descend(pn_x, pn_locs, *pn_npks); for (i = -1; i < *pn_npks; i++) { n_old_npks = *pn_npks; *pn_npks = i + 1; for (j = i + 1; j < n_old_npks; j++) { n_dist = pn_locs[j] - (i == -1 ? -1 : pn_locs[i]); // lag-zero peak of autocorr is at index -1 if (n_dist > n_min_distance || n_dist < -n_min_distance) pn_locs[(*pn_npks)++] = pn_locs[j]; } } // Resort indices longo ascending order maxim_sort_ascend(pn_locs, *pn_npks); } void maxim_sort_ascend(int32_t *pn_x, int32_t n_size) /** * \brief Sort array * \par Details * Sort array in ascending order (insertion sort algorithm) * * \retval None */ { int32_t i, j, n_temp; for (i = 1; i < n_size; i++) { n_temp = pn_x[i]; for (j = i; j > 0 && n_temp < pn_x[j - 1]; j--) pn_x[j] = pn_x[j - 1]; pn_x[j] = n_temp; } } void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size) /** * \brief Sort indices * \par Details * Sort indices according to descending order (insertion sort algorithm) * * \retval None */ { int32_t i, j, n_temp; for (i = 1; i < n_size; i++) { n_temp = pn_indx[i]; for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j - 1]]; j--) pn_indx[j] = pn_indx[j - 1]; pn_indx[j] = n_temp; } }
这样的话通过上述的算法就可以将原始数据转换成血氧和心率了。
然后只需要在主函数中进行调用和显示OLED即可。
int main(void) { uint32_t red, ir; if (max30102_init() != 0) { printf("MAX30102 init failed!\n"); return 0; } SSD1306_Init(); SSD1306_Clear(); SSD1306_Print(0, 0, "MAX30102 Demo"); SSD1306_DisplayFrame(SSD1306_Buffer); while (1) { if (max30102_read_fifo(&red, &ir) == 0) { red_buffer[buffer_index] = red; ir_buffer[buffer_index] = ir; buffer_index++; if (buffer_index >= BUFFER_SIZE) { int32_t spo2, heart_rate; int8_t spo2_valid, hr_valid; // 调用算法 maxim_heart_rate_and_oxygen_saturation( ir_buffer, BUFFER_SIZE, red_buffer, &spo2, &spo2_valid, &heart_rate, &hr_valid); // 清屏 SSD1306_Clear(); // 打印心率 if (hr_valid && heart_rate > 40 && heart_rate < 180) { printf("Heart Rate = %d BPM, ", heart_rate); SSD1306_Print(0, 2, "HR:"); SSD1306_PrintInt(30, 2, heart_rate); SSD1306_Print(80, 2, "BPM"); } else { printf("Heart Rate = --- , "); SSD1306_Print(0, 2, "HR: ---"); } // 打印血氧 if (spo2_valid && spo2 > 70 && spo2 <= 100) { printf("SpO2 = %d%%\n", spo2); SSD1306_Print(0, 4, "SpO2:"); SSD1306_PrintInt(40, 4, spo2); SSD1306_Print(80, 4, "%"); } else { printf("SpO2 = ---\n"); SSD1306_Print(0, 4, "SpO2: ---"); } // 刷新屏幕 SSD1306_DisplayFrame(SSD1306_Buffer); // 重置 buffer buffer_index = 0; } } // 100Hz 采样 MXC_Delay(MXC_DELAY_MSEC(10)); } }
效果如下所示
实际上尽管如此,我感觉数据还是不是很准确。但是这已经是目前能做到的极限了。